Recitation 15

Priority Queues

15.1 Announcements

• *DPLab* has been released, and is due **this Friday**.

15.2 Leftist Heaps

Task 15.1. Identify the defining properties of a leftist heap.

Task 15.2. What is an upper bound on the rank of the root of a leftist heap?

15.2.1 Building A Leftist Heap

Consider the following pseudo-SML code implementing leftist heaps.

```
Data Structure 15.3. Leftist Heap
  1 datatype PQ = Leaf \mid Node of int \times key \times PQ \times PQ
 2
 3 fun rank Q =
      case Q of
 4
 5
         Leaf \Rightarrow 0
       | Node (r, \_, \_, \_) \Rightarrow r
 6
 7
 8 fun makeLeftistNode (k, A, B) =
 9
      if rank A < rank B
       then Node (1 + rank A, k, B, A)
10
       else Node (1 + rank B, k, A, B)
 11
12
13 fun meld (A,B) =
14
      case (A, B) of
15
         (\_, Leaf) \Rightarrow A
16
       | (Leaf, \_) \Rightarrow B
       | (Node (\_, k_a, L_a, R_a), Node (\_, k_b, L_b, R_b)) \Rightarrow
17
18
            if k_a < k_b
19
            then makeLeftistNode (k_a, L_a, meld (R_a, B))
20
            else makeLeftistNode (k_b, L_b, meld (A, R_b))
21
22 fun singleton k = Node (1, k, Leaf, Leaf)
23
24 fun insert (Q,k) = meld (Q, singleton k)
25
26 fun from Seq S = Seq. reduce meld Leaf (Seq. map singleton S)
27
28 fun deleteMin Q =
29
       case Q of
30
         Leaf \Rightarrow (NONE, Q)
31
       | Node (\_, k, L, R) \Rightarrow (SOME k, meld (L, R))
```

```
Task 15.4. Diagram the process of executing the code
```

fromSeq $\langle 3, 5, 2, 1, 4, 6, 7, 8 \rangle$

Task 15.5. What are the work and span of (fromSeq S) in terms of |S| = n?

15.2.2 Dynamic Median

	Work	Span	Description
fromSeq S	O(S)	$O(\log^2 S)$	Constructs a dynamic me-
			dian data structure from
			the collection of keys in S
median M	<i>O</i> (1)	O(1)	Returns the median of all
			keys stored in M
nsert (M,k)	$O(\log M)$	$O(\log M)$	Inserts k into M

For simplicity, you may assume that all elements inserted into such a structure are distinct.

15.3 Additional Exercises

Exercise 15.7. Prove a lower bound of $\Omega(\log n)$ for deleteMin in comparison-based meldable priority queues. That is, prove that any meldable priority queue implementation which has a logarithmic meld cannot support deleteMin in faster than logarithmic time.