
Recitation 13

Minimum Spanning Trees

13.1 Announcements

• SegmentLab has been released, and is due Friday, November 17. It’s worth 135 points.

73

74 RECITATION 13. MINIMUM SPANNING TREES

13.2 Prim’s Algorithm

Minimum spanning trees are useful for a variety of applications in computer science, such as
resource allocation, clustering, and image processing. They exhibit certain “greedy” properties
that allow fast computation.

In particular, the light-edge property, or cut property, states that when a graph G = (V,E)
has its vertices cut into two partititions (U, V \ U), then the edge with minimum weight that
crosses from U into V \ U is in the MST of G.

Prim’s algorithm allows us to exploit this property to greedily insert edges into the partial
MST until the full tree is built. The algorithm performs a priority-first search in a fashion similar
to Dijkstra’s algorithm. A partial implementation for connected, weighted, undirected graphs is
given below.

Algorithm 13.1. Prim’s Algorithm (Partial)

1 fun Prim G =
2 let
3 fun prim (X,T,Q) =
4 case PQ.deleteMin Q of
5 (NONE, _) ⇒
6 | (SOME (d,(u,v)),Q′) ⇒
7 if v ∈ X then else
8 let
9 val X ′ =

10 val T ′ = case u of
11 NONE ⇒
12 | SOME u′ ⇒
13 fun relax (Q,(v′,w)) =
14 val Q′′ = iterate relax Q′ (N+

G (v))
15 in
16 prim (X ′,T ′,Q′′)
17 end
18 in
19 prim ({},[],PQ.singleton (0,(NONE,0)))
20 end

Task 13.2. Complete the implementation above by filling in the blanks. The similarity
of Prim’s and Dijkstra’s algorithms should yield a O(m log n) work and span bound as
for Dijkstra’s algorithm.

Built: November 14, 2017

13.2. PRIM’S ALGORITHM 75

Algorithm 13.3. Prim’s Algorithm (Complete)

1 fun Prim G =
2 let
3 fun prim (X,T,Q) =
4 case PQ.deleteMin Q of
5 (NONE, _) ⇒ T
6 | (SOME (d,(u,v)),Q′) ⇒
7 if v ∈ X then prim (X,T,Q′) else
8 let
9 val X ′ = X ∪ {v}

10 val T ′ = case u of
11 NONE ⇒ T
12 | SOME u′ ⇒ (u′, v) :: T ′

13 fun relax (Q,(v′,w)) =
14 PQ.insert (Q,(w,(SOME v,v′)))
15 val Q′′ = iterate relax Q′ (N+

G (v))
16 in
17 prim (X ′,T ′,Q′′)
18 end
19 in
20 prim ({},[],PQ.singleton (0,(NONE,0)))
21 end

Task 13.4. In Dijkstra’s algorithm, it was possible to terminate the algorithm early
when we first reached some vertex t to obtain the shortest path from s to t. Can we make
a similar optimization in Prim’s algorithm? If so, what is it?

Yes. Since the MST has at most n− 1 edges, we may stop when |T | = n− 1.

Remark 13.5. Just as we generalized DFS to solve problems ranging from connectivity
to bridge edges, we see it is possible to generalize Dijkstra’s algorithm to obtain BFS,
A* search, or Prim’s algorithm. How versatile!

Since the algorithm is so similar to Dijkstra’s algorithm, we would expect the same work
and span bounds, or possibly faster using a more advanced heap structure. However, Prim’s
algorithm has no parallelism, while Borůvka’s algorithm does.

Built: November 14, 2017

76 RECITATION 13. MINIMUM SPANNING TREES

13.3 Borůvka’s Algorithm

The textbook describes two versions of Borůvka’s algorithm: one which performs tree contrac-
tion at each round, and another which performs a single round of star contraction at each round.
We will be using the latter, since it has better overall span, O(log2 n) rather than O(log3 n).

Task 13.6. Run Borůvka’s algorithm on the following graph. Draw the graph at each
round, and identify which edges are MST edges. Use the coin flips specified.

1

2

3

4

7

6

9

8

10

5

6

3 2

2

8

8
9

9

7

9

5

4

1
4

3

18

Vertices
Round 1 2 3 4 5 6 7 8 9 10

0 H T H T T H T H T T
1 T H T T T H
2 T H T

Built: November 14, 2017

13.3. BORŮVKA’S ALGORITHM 77

Round 0:

6

3 2

9

8

8
18

9

7
2

9

5

4

1
4

3

1

2

3

4

5

6

7
8

9

10

tails

heads

minE

picked for contraction

* direction of edges indicates

the specific edge picked

Round 1:

6

3 2

9

8

8

18

9

7

2

9

4
3

1

2

3

6

8

10
tails

heads

minE

picked for contraction

 * direction of edges indicates the specific edge picked

Round 2:

7
9

18
8

9

9
2

6

10

tails

heads

minE

picked for contraction

Built: November 14, 2017

78 RECITATION 13. MINIMUM SPANNING TREES

13.4 Additional Exercises

Exercise 13.7. The vertex-joiners selected in any round of Borůvka’s algorithm form a
forest when no two edge weights are equal. Prove this fact.
Hint: a forest, by definition, has no cycles.

Exercise 13.8. In graph theory, an independent set is a set of vertices for which no two
vertices are neighbors of one another. The maximal independent set (MIS) problem is
defined as follows:

For a graph (V,E), find an independent set I ⊆ V such that for all v ∈
(V \ I), I ∪ {v} is not an independent set.a

Design an efficient parallel algorithm based on graph contraction which solves the MIS
problem.

aThe condition that we cannot extend such an independent set I with another vertex is what makes
it “maximal.” There is a closely related problem called maximum independent set where you find the
largest possible I . However, this problem turns out to be NP-hard!

Built: November 14, 2017

	Minimum Spanning Trees
	Announcements
	Prim's Algorithm
	Boruvka's Algorithm
	Additional Exercises

