Recitation 13

Minimum Spanning Trees

13.1 Announcements

- SegmentLab has been released, and is due Friday, November 17. It's worth 135 points.

13.2 Prim's Algorithm

Minimum spanning trees are useful for a variety of applications in computer science, such as resource allocation, clustering, and image processing. They exhibit certain "greedy" properties that allow fast computation.

In particular, the light-edge property, or cut property, states that when a graph $G=(V, E)$ has its vertices cut into two partititions ($U, V \backslash U$), then the edge with minimum weight that crosses from U into $V \backslash U$ is in the MST of G.

Prim's algorithm allows us to exploit this property to greedily insert edges into the partial MST until the full tree is built. The algorithm performs a priority-first search in a fashion similar to Dijkstra's algorithm. A partial implementation for connected, weighted, undirected graphs is given below.

```
Algorithm 13.1. Prim's Algorithm (Partial)
fun \(\operatorname{Prim} G=\)
    let
        fun \(\operatorname{prim}(X, T, Q)=\)
            case \(P Q\).deleteMin \(Q\) of
                (NONE, _) \(\Rightarrow\)
            \(\mid\left(\operatorname{SOME}(d,(u, v)), Q^{\prime}\right) \Rightarrow\)
                if \(v \in X\) then else
                    let
                    val \(X^{\prime}=\)
                val \(T^{\prime}=\) case \(u\) of
                    NONE \(\Rightarrow\)
                    | SOME \(u^{\prime} \Rightarrow\)
                    fun \(\operatorname{relax}\left(Q,\left(v^{\prime}, w\right)\right)=\)
                    val \(Q^{\prime \prime}=\) iterate relax \(Q^{\prime}\left(N_{G}^{+}(v)\right)\)
            in
                    \(\operatorname{prim}\left(X^{\prime}, T^{\prime}, Q^{\prime \prime}\right)\)
            end
    in
        prim \((\},[], P Q\). singleton \((0,(N O N E, 0)))\)
    end
```

Task 13.2. Complete the implementation above by filling in the blanks. The similarity of Prim's and Dijkstra's algorithms should yield a $O(m \log n)$ work and span bound as for Dijkstra's algorithm.

```
Algorithm 13.3. Prim's Algorithm (Complete)
fun Prim \(G=\)
    let
        fun \(\operatorname{prim}(X, T, Q)=\)
            case \(P Q . d e l e t e M i n ~ Q ~ o f ~\)
                (NONE, _) \(\Rightarrow T\)
            \(\mid\left(\operatorname{SOME}(d,(u, v)), Q^{\prime}\right) \Rightarrow\)
                if \(v \in X\) then prim \(\left(X, T, Q^{\prime}\right)\) else
                let
                    val \(X^{\prime}=X \cup\{v\}\)
                    val \(T^{\prime}=\) case \(u\) of
                    NONE \(\Rightarrow T\)
                    | SOME \(u^{\prime} \Rightarrow\left(u^{\prime}, v\right):: T^{\prime}\)
                    fun \(\operatorname{relax}\left(Q,\left(v^{\prime}, w\right)\right)=\)
                    \(P Q\). insert \(\left(Q,\left(w,\left(\operatorname{SOME} v, v^{\prime}\right)\right)\right)\)
                    val \(Q^{\prime \prime}=\) iterate relax \(Q^{\prime}\left(N_{G}^{+}(v)\right)\)
                in
                    prim \(\left(X^{\prime}, T^{\prime}, Q^{\prime \prime}\right)\)
                end
    in
        \(\operatorname{prim}(\},[], P Q . \operatorname{singleton}(0,(N O N E, 0)))\)
    end
```

Task 13.4. In Dijkstra's algorithm, it was possible to terminate the algorithm early when we first reached some vertex to obtain the shortest path from s to t. Can we make a similar optimization in Prim's algorithm? If so, what is it?

Yes. Since the MST has at most $n-1$ edges, we may stop when $|T|=n-1$.

Remark 13.5. Just as we generalized DFS to solve problems ranging from connectivity to bridge edges, we see it is possible to generalize Dijkstra's algorithm to obtain BFS, A* search, or Prim's algorithm. How versatile!

Since the algorithm is so similar to Dijkstra's algorithm, we would expect the same work and span bounds, or possibly faster using a more advanced heap structure. However, Prim's algorithm has no parallelism, while Borůvka's algorithm does.

13.3 Borůvka's Algorithm

The textbook describes two versions of Borůvka's algorithm: one which performs tree contraction at each round, and another which performs a single round of star contraction at each round. We will be using the latter, since it has better overall span, $O\left(\log ^{2} n\right)$ rather than $O\left(\log ^{3} n\right)$.

Task 13.6. Run Boriovka's algorithm on the following graph. Draw the graph at each round, and identify which edges are MST edges. Use the coin flips specified.

Round 0:

Round 1:

Round 2:

Built: November 14, 2017

13.4 Additional Exercises

Exercise 13.7. The vertex-joiners selected in any round of Borůvka's algorithm form a forest when no two edge weights are equal. Prove this fact. Hint: a forest, by definition, has no cycles.

Exercise 13.8. In graph theory, an independent set is a set of vertices for which no two vertices are neighbors of one another. The maximal independent set (MIS) problem is defined as follows:

For a graph (V, E), find an independent set $I \subseteq V$ such that for all $v \in$ $(V \backslash I), I \cup\{v\}$ is not an independent set. ${ }^{a}$

Design an efficient parallel algorithm based on graph contraction which solves the MIS problem.

[^0]
[^0]: ${ }^{a}$ The condition that we cannot extend such an independent set I with another vertex is what makes it "maximal." There is a closely related problem called maximum independent set where you find the largest possible I. However, this problem turns out to be NP-hard!

