Recitation 13

Minimum Spanning Trees

13.1 Announcements

• SegmentLab has been released, and is due Friday, November 17. It's worth 135 points.

13.2 Prim's Algorithm

Minimum spanning trees are useful for a variety of applications in computer science, such as resource allocation, clustering, and image processing. They exhibit certain "greedy" properties that allow fast computation.

In particular, the *light-edge property*, or *cut property*, states that when a graph G=(V,E) has its vertices cut into two partititions $(U,V\setminus U)$, then the edge with minimum weight that crosses from U into $V\setminus U$ is in the MST of G.

Prim's algorithm allows us to exploit this property to greedily insert edges into the partial MST until the full tree is built. The algorithm performs a priority-first search in a fashion similar to Dijkstra's algorithm. A partial implementation for connected, weighted, undirected graphs is given below.

```
Algorithm 13.1. Prim's Algorithm (Partial)
 1 fun Prim G =
 2
      let
 3
        fun prim (X,T,Q) =
4
           case PQ. deleteMin Q of
 5
              (NONE, \_) \Rightarrow \_\_
           | (SOME (d, (u, v)), Q') \Rightarrow
6
7
                if v \in X then _____
                                                  else
 8
                let
                   val X' = \underline{\hspace{1cm}}
9
                   val T' = case u of
10
                     NONE ⇒ ____
11
                   \mid SOME u' \Rightarrow ____
12
                   fun relax (Q,(v',w)) = 
13
                   val Q'' = iterate relax Q' (N_C^+(v))
14
15
                   prim (X', T', Q'')
16
17
                end
18
      in
19
        prim (\{\}, [], PQ.singleton (0, (NONE, 0)))
20
      end
```

Task 13.2. Complete the implementation above by filling in the blanks. The similarity of Prim's and Dijkstra's algorithms should yield a $O(m \log n)$ work and span bound as for Dijkstra's algorithm.

Task 13.3. In Dijkstra's algorithm, it was possible to terminate the algorithm early when we first reached some vertex t to obtain the shortest path from s to t. Can we make a similar optimization in Prim's algorithm? If so, what is it?

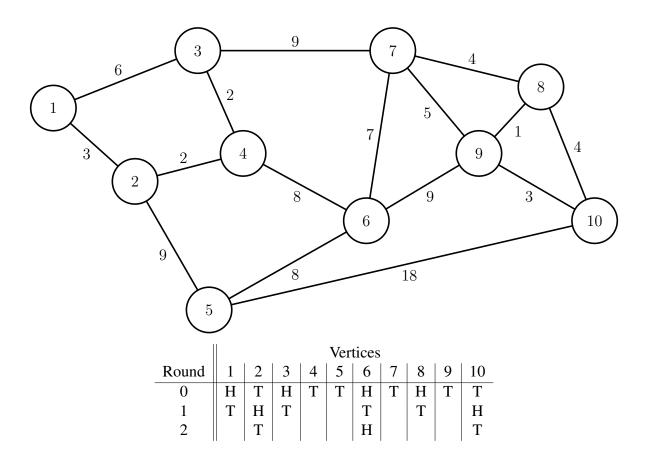
Remark 13.4. Just as we generalized DFS to solve problems ranging from connectivity to bridge edges, we see it is possible to generalize Dijkstra's algorithm to obtain BFS, A* search, or Prim's algorithm. How versatile!

Since the algorithm is so similar to Dijkstra's algorithm, we would expect the same work and span bounds, or possibly faster using a more advanced heap structure. However, Prim's algorithm has no parallelism, while Borůvka's algorithm does.

13.3 Borůvka's Algorithm

The textbook describes two versions of Borůvka's algorithm: one which performs tree contraction at each round, and another which performs a single round of star contraction at each round. We will be using the latter, since it has better overall span, $O(\log^2 n)$ rather than $O(\log^3 n)$.

Task 13.5. Run Borůvka's algorithm on the following graph. Draw the graph at each round, and identify which edges are MST edges. Use the coin flips specified.



13.4 Additional Exercises

Exercise 13.6. The vertex-joiners selected in any round of Borůvka's algorithm form a forest when no two edge weights are equal. Prove this fact. Hint: a forest, by definition, has no cycles.

Exercise 13.7. In graph theory, an **independent set** is a set of vertices for which no two vertices are neighbors of one another. The **maximal independent set** (MIS) problem is defined as follows:

For a graph (V, E), find an independent set $I \subseteq V$ such that for all $v \in (V \setminus I)$, $I \cup \{v\}$ is not an independent set.^a

Design an efficient parallel algorithm based on graph contraction which solves the MIS problem.

^aThe condition that we cannot extend such an independent set I with another vertex is what makes it "maximal." There is a closely related problem called <u>maximum</u> independent set where you find the largest possible I. However, this problem turns out to be NP-hard!