
Recitation 1

Introduction

1.1 Announcements

• Welcome to 15-210!

• The course website is http://www.cs.cmu.edu/˜15210/. It contains the syl-
labus, schedule, library documentation, staff contact information, and other useful re-
sources.

• We will be using Piazza (https://piazza.com/) as a hub for course announce-
ments and general questions pertaining to the course. Please check it frequently to make
sure you don’t miss anything.

• The office hours schedule is posted on the course website as well as Piazza. Come meet
all of your TAs!

• The first homework assignment, IntegralLab, has been released! It’s due Friday at 5pm,
but don’t worry – it’s quite short.

• Homeworks will be distributed through Autolab (https://autolab.andrew.cmu.
edu/). Most homework assignments will be released on Fridays and will be due one
week later. You will submit coding tasks on Autolab, and written tasks on Gradescope
(https://gradescope.com/).

1

http://www.cs.cmu.edu/~15210/
https://piazza.com/
https://autolab.andrew.cmu.edu/
https://autolab.andrew.cmu.edu/
https://gradescope.com/


2 RECITATION 1. INTRODUCTION

1.2 Sequences

Sequences, which you’ve seen in 15-150, are a parallel data structure that are immutable and
functional like lists, yet easy to randomly access like arrays. They’re a useful abstraction for
various real-world parallel sequence structures that let us model parallel computation at the
algorithmic level.

Several basic operations are useful on sequences, like tabulations, maps, filters, and reduc-
tions. We use mathematical notation to represent these manipulations:

〈
e : 0 ≤ i < n

〉
tabulate (fn i => e) n〈

e : p ∈ S
〉

map (fn p => e) S〈
p ∈ S | e

〉
filter (fn p => e) S

Using an efficient sequence, like ArraySequence, the work of tabulate, map, filter,
and reduce is linear in the size of the sequence if the function argument is constant-time.
However, we get large gains in span: constant for tabulate and map, and logarithmic for
filter and reduce.

1.3 Primes

Let’s now get some practice using parallel sequences.

Task 1.1. Implement the function isPrime : int → bool, which returns true
iff the input is a prime number.

Task 1.2. Determine the work and span of isPrime n.

Now that we have a way of testing primality, we can try to generate a sequence of primes.

Task 1.3. Implement the function primes : int → int seq, which returns a
sequence of the prime numbers less than n.

The work and span of this algorithm are more subtle. Using tools that we’ll develop later
in the course, we are able to derive a O(n3/2) work and O(log n) span bound for the simplest
prime generation algorithm.

Built: August 28, 2017



1.4. BONUS EXERCISES 3

1.4 Bonus Exercises

There’s a more efficient way to generate primes up to n. Knowing a number is composite, we
know that all multiples of it up to n are composite. So, for each number from 1 to

√
n, we can

keep track of its multiples, and for each composite we can mark its multiples composite. This
algorithm is called the sieve of Eratosthenes, and it is much more efficient.

Task 1.4. Implement the function primes : int → int seq using the improved
method.

Built: August 28, 2017



4 RECITATION 1. INTRODUCTION

.

Built: August 28, 2017


	Introduction
	Announcements
	Sequences
	Primes
	Bonus Exercises


