
Recitation 16

Hashing and PASL

16.1 Announcements

• PASLLab is due on Friday at midnight. Note that you cannot use late days on this lab.

91

92 RECITATION 16. HASHING AND PASL

16.2 Removing Duplicates

Removing duplicates is a crucial substep of many interesting algorithms. For example, in BFS,
consider the step where we construct a new frontier. One viable method would to be to generate
the sequence of all out-neighbors, and then remove duplicates:

F ′ = removeDuplicates
〈
v : u ∈ F, v ∈ N+

G (u)
〉

So, how fast is it to remove duplicates? Can we do it in parallel?

16.2.1 Sequential

Before we think about parallelism, we should acquaint ourselves with a good sequential algo-
rithm solving the same problem. This way, we know what to shoot for in terms of work bounds,
since we want our parallel algorithm to be asymptotically work-efficient.

Task 16.1. Describe a sequential algorithm which performs expected O(n) work to re-
move duplicates from a sequence of length n. Also argue that Ω(n) work is necessary in
order to solve this problem, and conclude that your algorithm is asymptotically optimal.

Hint: try hashing elements one at a time.

We can iterate left-to-right across the sequence, maintaining a set of all elements seen so
far. At each element, we check to see if it’s present in the set. If it is, we ignore it. If it isn’t,
we insert it into the set and also write it to the output. Using a hash set, we can check for
membership and do insertions both in expected constant time. So, this algorithm has expected
O(n) work.

Removing duplicates requires at least Ω(n) work because we have to inspect every element.
Here’s a sketch of a proof by contradiction: suppose there was an algorithm for removing
duplicates which used only o(n) work. Then there must be at least one element of the input
which the algorithm did not inspect. If the algorithm would blindly include this element in the
output, then we can adversarily choose that element to be a duplicate. If instead the algorithm
blindly excludes the element from the output, then we can adversarily choose the element to be
distinct. Thus clearly the given algorithm does not properly remove duplicates.

Since Ω(n) work is necessary and our algorithm has O(n) work, we know it is asymptoti-
cally optimal in terms of runtime.

Built: December 4, 2017

16.2. REMOVING DUPLICATES 93

16.2.2 Parallel

Task 16.2. Implement a function

val removeDuplicates : (α × int → int) → α Seq.t → α Seq.t

where (removeDuplicates h S) retuns a sequence of all unique elements of S,
given that h(e,m) hashes the element e to a uniform random integer in the range [0,m)
(thus the probability of collision for any two distinct elements is 1/m).

Hint: as a first attempt, try simultaneously hashing as many elements as possible all at
the same time. What do you do when elements collide?

We can use inject to simultaneously insert as many keys as possible into an initially
empty hash table T of some size m > n (we’ll decide on a value for m later). Specifically, for
every 0 ≤ i < |S|, we attempt to insert the pair (i, S[i]) at the location T [h(S[i],m)].

Every pair (i, S[i]) then compares itself against the value (j, S[j]) stored at T [h(S[i],m)].
If i = j, then S[i] is “accepted,” and will be included in the output. Otherwise, if S[i] 6= S[j],
then S[i] is passed on to be retried in the next round. We continue retrying until no elements
remain.

Why is this algorithm correct? Consider some key k; we never discard k until k is accepted,
so we only need to argue that we never accept the same key twice. Consider some round and
two indices i 6= j such that S[i] = S[j]. If S[i] is accepted then S[j] won’t be (since i 6= j), and
furthermore it won’t be retried on the next round. Therefore S[j] will never be accepted.

How many elements are retried each round? Consider:

Pr [S[i] is retried] = Pr [∃j.S[i] 6= S[j] ∧ h(S[i],m) = h(S[j],m)]

≤
∑

S[i]6=S[j]

Pr [h(S[i],m) = h(S[j],m)]

≤ |S|
m

If we chose m = 3|S|/2, then |S|/m = 2/3, and by linearity of expectation, we have that the
number of retried elements is at most 2|S|/3 in expectation.

Since we need O(|S|) work and O(log |S|) span on each round, we expect a logarithmic
number of rounds with a geometrically decreasing input. We’ve seen such recurrences before;
they solve to expected linear work and log-squared span.

Built: December 4, 2017

94 RECITATION 16. HASHING AND PASL

Algorithm 16.3. Removing duplicates with hashing.

1 fun removeDuplicates S =
2 if |S| = 0 then 〈〉 else
3 let
4 val E = Seq.enum S
5
6 val m = 3|S|

2
7 val base = 〈NONE : 0 ≤ i < m〉
8 val updates = 〈(h(k,m), SOME(i, k)) : (i, k) ∈ E〉
9 val T = Seq.inject (base, updates)

10
11 fun accept (i, k) =

(
T [h(k,m)] = SOME (i, k)

)
12 val A = 〈k : (i, k) ∈ E |accept(i, k)〉
13
14 fun retry k = let val SOME(_,k′) = T [h(k,m)] in k 6= k′ end
15 in
16 Seq.append (A, removeDuplicates 〈k ∈ S |retry(k)〉)
17 end

Built: December 4, 2017

16.3. PASL: MAP_FLATTEN 95

16.3 PASL: map_flatten

If you would like to see the code run on your computer, begin by downloading the files rec14.hpp
and rec14-bench.cpp. You can put these in the top directory of PASLLab once it is re-
leased. Then, edit PASLLab’s Makefile to add: rec14-bench.cpp to the list of programs,
i.e.

PROGRAMS=\
sandbox.cpp \
check.cpp \
bench.cpp \
rec14-bench.cpp # add me here.

don’t forget the slash on the previous line.

Task 16.4. Using PASL primitives, implement the function

template <class Map_func, class Size_func>
sparray map_flatten(const Map_func& f,

const Size_func& g,
const sparray& xs);

where, at a high-level, the goal is to compute

flatten
〈
f(x) : x ∈ xs

〉
.

Begin by thinking of a sequential implementation and then parallelizing it. You should
assume that the function arguments are typed as follows, where f(xs[i]) is a pointer
to the front of an array of length g(xs[i]).

f : value_type→ value_type∗
g : value_type→ long

If we were to implement map flatten sequentially, we could create a new array of the sum of
the sizes of the inner arrays in xs and use two for-loops, one looping through the inner arrays
and the other through the elements of each inner array, to map every element and add it to the
new array.

To parallelize this procedure, we would want to perform both for-loops in parallel. However,
such an approach requires that every inner array knows the location of its elements in the new,
large array independently of other inner arrays.

The first step is then to determine the offsets of the subarrays in the output. We can compute
this by mapping g across the input followed by a plus-scan. Note that we’re using the fusioned
form of scan_excl here, which performs a map for us.

Built: December 4, 2017

96 RECITATION 16. HASHING AND PASL

auto plus = [] (value_type a, value_type b) { return a + b; };
auto offsets = scan_excl(plus, g, 0l, xs);

The output of a scan_excl is a struct containing two fields, partials and total. The
former is an sparray the same length as the input which contains each exclusive prefix sum,
while the latter is the sum of the entire input. Therefore we can go ahead and allocate the result
array, since we know its length.

sparray result = sparray(offsets.total);

Next, we’d like to map f across the input to discover each subarray, then write these subarrays
to result. This can be accomplished with two nested parallel_for loops. So, we’ll need
to declare two granularity controllers (for now, lets just call these C1 and C2). After this step,
we simply return the result array.

par::parallel_for(C1, 0L, xs.size(), [&] (long i) {
value_type* elems = f(xs[i]);
par::parallel_for(C2, 0L, g(xs[i]), [&] (long j) {

result[offsets.partials[i] + j] = elems[j];
});

});

Note that parallel_for assumes that the code body given to it is constant-time, which
is not true for the outer loop. So, we need to write a complexity function. The complexity
function given to a parallel_for is assumed to take two parameters which describe a range
of iterations of the for-loop, and return the complexity of that entire range. Note that any
particular iteration i of our loop has a complexity of g(xs[i]), but in general, a range of
iterations [`, h) has complexity

h−1∑
i=`

g(xs[i]).

These ranges can be easily calculated using the output of the scan we computed earlier. Our
complexity function therefore looks like the following:

auto complexity = [&] (long lo, long hi) {
long upper = (hi == xs.size()) ?

offsets.total :
offsets.partials[hi];

return upper - offsets.partials[lo];
};

The completed code is given below.

Built: December 4, 2017

16.3. PASL: MAP_FLATTEN 97

Algorithm 16.5. map_flatten in PASL

loop_controller_type C1("map_flatten_1");
loop_controller_type C2("map_flatten_2");
template <class Map_func, class Size_func>
sparray map_flatten(const Map_func& f, const Size_func& g,

const sparray& xs) {
long n = xs.size();

auto plus = [] (value_type a, value_type b) { return a + b; };
auto offsets = scan_excl(plus, g, 0L, xs);

sparray result = sparray(offsets.total);
auto complexity = [&] (long lo, long hi) {

long upper = (hi == n) ? offsets.total : offsets.partials[hi];
return upper - offsets.partials[lo];

};
par::parallel_for (C1, complexity, 0L, n, [&] (long i) {

value_type* elems = f(xs[i]);
par::parallel_for (C2, 0L, g(xs[i]), [&] (long j) {

result[offsets.partials[i] + j] = elems[j];
});

});

return result;
}

Remark 16.6. These controller declarations are technically not correct. We should
really templatize the controllers over the classes Map_func and Size_func, just
as map_flatten is. You can find examples of these kinds of declarations in the
sparray.hpp source file.

Remark 16.7. Some of the techniques used here may also be useful when implementing
BFS in PASLLab. Feel free to reuse any code from this recitation, although you may
want to make some modifications...

Built: December 4, 2017

98 RECITATION 16. HASHING AND PASL

16.4 inject

Throughout the semester, we’ve largely kept the sequence function inject shrouded in mys-
tery. Let’s see how the magic works!

Task 16.8. Using PASL, implement the function

sparray inject(const sparray& xs,
const sparray& indices,
const sparray& updates);

which returns the result of injecting into xs. We require that indices and updates
be the same length, such that for each i, we attempt to write updates[i] at position
indices[i] in xs. Note that you should not destructively modify xs.
If there are multiple updates specified at the same position, then all except the last
should be ignored. (We want to match the behavior of inject as specified in the
15210 Library.)

Let’s step back for a moment and review the compare-and-swap (CAS) operation. Given a
memory location ` and two values x and y, this operation atomically performs the following:

1. Compare x against the contents of the memory location `.

2. If they are equal, write y at ` and return true.

3. Otherwise, return false.

A simple extension of CAS is called a priority update1. This operation takes a memory location
` and a value y and attempts to write y at `, but only if y is “greater than” the current value stored
at ` (we write “greater than” in quotes because we could really use any comparison function).
We can implement a priority update as follows:

1. Load the contents of ` into x.

2. While y > x:

(a) If CAS(`, x, y) then return.

(b) Otherwise, load the contents of ` into x.

Priority updates allow multiple threads to converge upon some “maximum” value stored at a
shared memory location. We can use this for inject. If m is the number of updates, the gen-
eral idea is this: for each 0 ≤ i < m, perform a priority update at a location temp[indices[i]]

1See http://www.eecs.berkeley.edu/˜jshun/contention.pdf

Built: December 4, 2017

http://www.eecs.berkeley.edu/~jshun/contention.pdf

16.4. INJECT 99

where we attempt to write i. Notice that the largest i will be the last thing written at this loca-
tion. For each position in the output, this effectively chooses which update will be written at
that position.

The full code is shown below. Note that we allocate and initialize the temp array by filling
it with invalid indices, to detect which positions in the output will not change from the input.
We implement compare-and-swap using the builtin compare_exchange_strong opera-
tion provided by the C++ std::atomic class. This function is slightly different than the
pseudocode given above. Specifically,

`.compare_exchange_strong(x, y)

requires that x is a reference. If the CAS fails, then the contents of ` will be written into x.

Algorithm 16.9. inject in PASL.

loop_controller_type C3("inject_contr_1");
loop_controller_type C4("inject_contr_2");
sparray inject(const sparray& xs,

const sparray& indices,
const sparray& updates) {

long n = xs.size();
long m = updates.size(); // must be equal to indices.size()

const long NO_UPDATE = -1L;
auto temp = my_malloc<std::atomic<long>>(n);

par::parallel_for (C3, 0L, n, [&] (long i) {
temp[i].store(NO_UPDATE);

});

par::parallel_for (C4, 0L, m, [&] (long i) {
std::atomic<long>& cell = temp[indices[i]];
long curr = cell.load();
// below, curr is updated if the CAS fails
while (i > curr && !cell.compare_exchange_strong(curr, i))

});

sparray result = tabulate([&] (long i) {
long idx = temp[i].load();
return idx == NO_UPDATE ? xs[i] : updates[idx];

}, n);

free(temp);
return result;

}

Built: December 4, 2017

100 RECITATION 16. HASHING AND PASL

16.5 Benchmarking

Try running some speedup experiments! The two bench arguments are map_flatten and
inject, respectively. For example, the following injects m randomly placed updates into an
array length n. In the map_flatten benchmark, n is the initial array size, and m is the size
of each subarray (so the output is length nm).

make rec14-bench.opt rec14-bench.baseline

./prun speedup -baseline "./rec14-bench.baseline" \
-parallel "./rec14-bench.opt -proc 1,5,10,15,20" \
-bench inject -n 100000,1000000 -m 100000000,200000000

./pplot speedup -series n,m

Built: December 4, 2017

	Hashing and PASL
	Announcements
	Removing Duplicates
	Sequential
	Parallel

	PASL: map`flatten
	inject
	Benchmarking

