Recitation 12

Graph Contraction

12.1 Announcements

e SegmentLab has been released, and is due Friday, November 17.

e Midterm 2 is tomorrow, Wednesday, November 8.
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RECITATION 12. GRAPH CONTRACTION

12.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components

in a graph:

Algorithm 12.1. (Algorithm 17.22 in the textbook.)

1 countComponents (V,E) =

\®)
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if |[E| =0 then |V| else
let
(V!,P) = starPartition (V,E)
E = {(P[u],P[v]) i (u,v) €E ‘ Plu] # P[U]}
in
countComponents (V'  E')
end

with starPartition implemented as follows:

Algorithm 12.2. (Algorithm 17.15 in the textbook.)

1 starPartition (V,E) =
let
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TH = {(u,v) € E|-heads(u)\heads(v)}
P = U {urv}
(u,v)eTH

V' = V\ domain(P)
P ={u—u:uecV'}

Now, suppose we implemented star partitioning for enumerated graphs as follows:

val enumStarPartition :

(int * int) Seg.t x int — int Seq.t

Specifically, given a graph represented as a sequence of edges £ where every vertex is labeled
0 <wv < n,(enumStarPartition (F,n)) returns a mapping P where P[v] is the super-
vertex containing v. (If v was a star center or was unable to contract, then P[v] = v.)

Task 12.3. Implement a function enumCount Component s which counts the number
of components of an enumerated graph. It should take in a graph represented as (E,n)
and use enumStarPartition internally.
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A direct but incorrect translation of the original code might look like this:

1 fun incorrectCountComponents (E,n) =

2 if |[E|=0 then n else

3 let

4 val P = enumStarPartition (E,n)

5 val B/ = ((P[u], P[v]) : (u,v) € E| Plu] # P[v])
6 in

7 incorrectCountComponents (E’,n)

8 end

The problem with this code is that it doesn’t actually count the number of connected compo-
nents, despite performing the contraction correctly. This is because we never modify the value
n.

A first step in fixing the issue is to add a line after line 5 which counts the number of distinct
vertices in E’. Specifically, we use P to identify which vertices no longer exist, filter them out,
then simply take the length of the resulting sequence:

val n' = |[(v:0<v<n|Pl]=0)

We could then pass n’ in to the recursive call rather than n. However, we now notice an even
bigger problem: not all vertices in E' are labeled 0 < v < n'.

What we really need to do is construct a new labeling within the range [0, n"). We can do so
by marking each each contracted vertex with a 0 and each remaining vertex with a 1 and running
a +-scan. This determines a sequence P’ which maps each remaining vertex to a unique label
in the range [0, n"). This step also conveniently calculates n’. At the end of the round, when we
promote edges by relabeling their endpoints, we have to further relabel them according to P’.
The code is as follows.

Algorithm 12.4. Counting connected components in an enumerated graph.

1 fun enumCountComponents (E,n) =

2 if |[E|=0 then n else

3 let

4 val P = enumStarPartition (E,n)

5 fun isAlive v = if PlvJ=wv then 1 else 0

6 val (P',n') = Seqg.scan + 0 (isAlive(v):0<v<n)
7 val E' = ((P'[P[u]}, P'[PP])) : (u,v) € E | Plu] # P[v])

8 in

9 enumCountComponents (E',n')

10 end
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12.2.1 Cost Bounds

Task 12.5. Recall that a forest is a collection of trees. ~What are the work
and span of enumCountComponents when applied to a forest? Assume that
(enumStarPartition (E,n)) requires O(n+ |E|) work and O(logn) span.

Line 6 of enumCountComponents clearly requires O(n) work and O(logn) span. Line
7 is just a map followed by a £ilter, and therefore requires O(m) work and O(logn) span.
But how do n and m change, round-to-round?

Regarding n, we recall that star-partitioning removes at least n/4 vertices in expectation,
and therefore we expect the number of vertices to decrease geometrically.

For general graphs, we can’t say that m decreases geometrically. However, a tree has n — 1
edges, and therefore m is initially upper bounded by n — 1. Furthermore, on each round,
exactly one edge is deleted for every vertex which is deleted. Therefore, for forests and trees, m
decreases geometrically during contraction. Therefore the total work and span of this algorithm
for an input forest of n vertices are O(n) and O(log® n), respectively.
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