
Recitation 12

Graph Contraction

12.1 Announcements

• SegmentLab has been released, and is due Friday, November 17.

• Midterm 2 is tomorrow, Wednesday, November 8.

69

70 RECITATION 12. GRAPH CONTRACTION

12.2 Contraction

In the textbook, we presented an algorithm for counting the number of connected components
in a graph:

Algorithm 12.1. (Algorithm 17.22 in the textbook.)

1 countComponents (V,E) =
2 if |E| = 0 then |V | else
3 let
4 (V ′, P) = starPartition (V,E)
5 E′ =

{
(P [u], P [v]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
}

6 in
7 countComponents (V ′, E′)
8 end

with starPartition implemented as follows:

Algorithm 12.2. (Algorithm 17.15 in the textbook.)

1 starPartition (V,E) =
2 let
3 TH =

{
(u, v) ∈ E

∣∣¬heads(u)∧heads(v)}
4 P =

⋃
(u,v)∈TH

{
u 7→ v

}
5 V ′ = V \ domain(P)
6 P ′ =

{
u 7→ u : u ∈ V ′}

7 in
8 (V ′, P ′ ∪ P)
9 end

Now, suppose we implemented star partitioning for enumerated graphs as follows:

val enumStarPartition : (int * int) Seq.t * int → int Seq.t

Specifically, given a graph represented as a sequence of edges E where every vertex is labeled
0 ≤ v < n, (enumStarPartition (E, n)) returns a mapping P where P [v] is the super-
vertex containing v. (If v was a star center or was unable to contract, then P [v] = v.)

Task 12.3. Implement a function enumCountComponents which counts the number
of components of an enumerated graph. It should take in a graph represented as (E, n)
and use enumStarPartition internally.

Built: December 5, 2017

12.2. CONTRACTION 71

A direct but incorrect translation of the original code might look like this:

1 fun incorrectCountComponents (E,n) =
2 if |E| = 0 then n else
3 let
4 val P = enumStarPartition (E,n)
5 val E′ =

〈
(P [u], P [v]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
〉

6 in
7 incorrectCountComponents (E′, n)
8 end

The problem with this code is that it doesn’t actually count the number of connected compo-
nents, despite performing the contraction correctly. This is because we never modify the value
n.

A first step in fixing the issue is to add a line after line 5 which counts the number of distinct
vertices in E ′. Specifically, we use P to identify which vertices no longer exist, filter them out,
then simply take the length of the resulting sequence:

val n′ =
∣∣〈v : 0 ≤ v < n |P [v] = v〉

∣∣
We could then pass n′ in to the recursive call rather than n. However, we now notice an even
bigger problem: not all vertices in E ′ are labeled 0 ≤ v < n′.

What we really need to do is construct a new labeling within the range [0, n′). We can do so
by marking each each contracted vertex with a 0 and each remaining vertex with a 1 and running
a +-scan. This determines a sequence P ′ which maps each remaining vertex to a unique label
in the range [0, n′). This step also conveniently calculates n′. At the end of the round, when we
promote edges by relabeling their endpoints, we have to further relabel them according to P ′.
The code is as follows.

Algorithm 12.4. Counting connected components in an enumerated graph.

1 fun enumCountComponents (E,n) =
2 if |E| = 0 then n else
3 let
4 val P = enumStarPartition (E,n)
5 fun isAlive v = if P [v] = v then 1 else 0
6 val (P ′, n′) = Seq.scan + 0 〈isAlive(v) : 0 ≤ v < n〉
7 val E′ =

〈
(P ′[P [u]], P ′[P [v]]) : (u, v) ∈ E

∣∣P [u] 6= P [v]
〉

8 in
9 enumCountComponents (E′, n′)

10 end

Built: December 5, 2017

72 RECITATION 12. GRAPH CONTRACTION

12.2.1 Cost Bounds

Task 12.5. Recall that a forest is a collection of trees. What are the work
and span of enumCountComponents when applied to a forest? Assume that
(enumStarPartition (E, n)) requires O(n+ |E|) work and O(log n) span.

Line 6 of enumCountComponents clearly requires O(n) work and O(log n) span. Line
7 is just a map followed by a filter, and therefore requires O(m) work and O(log n) span.
But how do n and m change, round-to-round?

Regarding n, we recall that star-partitioning removes at least n/4 vertices in expectation,
and therefore we expect the number of vertices to decrease geometrically.

For general graphs, we can’t say that m decreases geometrically. However, a tree has n− 1
edges, and therefore m is initially upper bounded by n − 1. Furthermore, on each round,
exactly one edge is deleted for every vertex which is deleted. Therefore, for forests and trees, m
decreases geometrically during contraction. Therefore the total work and span of this algorithm
for an input forest of n vertices are O(n) and O(log2 n), respectively.

Built: December 5, 2017

	Graph Contraction
	Announcements
	Contraction
	Cost Bounds

