
Recitation 1

Augmented Tables

1.1 Announcements

• RangeLab has been released, and is due Friday afternoon.

• BridgeLab will be released on Friday. The written portion will be due the following
Friday, while the coding portion will be due the Monday after that.

1

2 RECITATION 1. AUGMENTED TABLES

1.2 Interval Checking

Suppose you’re given a set of intervals I ⊂ Z × Z and some k ∈ Z, and you’re interested in
determining whether or not there exists (l, r) ∈ I such that l < k < r. For simplicity, let’s
assume that no two intervals share an endpoint.

Task 1.1. Implement a function

val intervalCheck : (int * int) Seq.t → int → bool

where (intervalCheck I k) answers the query mentioned above. Your function
must be staged such that the line

val q = intervalCheck I

performs O(|I| log |I|) work and O(log2 |I|) span, while each subsequent call q(k) only
performs O(log |I|) work and span. Try solving this problem with augmented tables.

We’ll store each (l, r) in a table as (l 7→ r), and augment the table with the function max.
This allows us to determine the rightmost endpoint of a set of intervals in constant time. To
answer the query, we can split I at k to get a set I ′ of all intervals which begin before k. We
then just need to check if any of these have endpoints which are greater than k.

Built: October 16, 2017

1.2. INTERVAL CHECKING 3

Algorithm 1.2. Interval Checking with Augmented Tables.

1 structure Val =
2 struct
3 type t = int
4 val f = Int.max
5 val I = −∞
6 val toString = Int.toString
7 end
8
9 structure Table = MkTreapAugTable (structure Key = IntElt

10 structure Val = Val)
11
12 fun intervalCheck I =
13 let
14 val T = Table.fromSeq I
15 fun query k =
16 let val (T ′,_,_) = Table.split (T, k)
17 in (|T ′| > 0) ∧ (Table.reduceVal T ′ > k)
18 end
19 in
20 query
21 end

Built: October 16, 2017

4 RECITATION 1. AUGMENTED TABLES

1.3 Interval Counting

Now suppose you want to solve a more general problem. Given I and k, you want to return
|{(l, r) ∈ I | l < k < r}|. Once again, for simplicity, we’ll assume all endpoints are distinct.

Task 1.3. Implement a function

val intervalCount : (int * int) Seq.t → int → int

where (intervalCheck I k) answers the interval counting query as mentioned
above. Your function must be staged, just like Task ??.

Similar to parentheses matching, we can use a counter which “increments” at the beginning
of each interval, and “decrements” at the end. This corresponds to building a table of (l 7→ 1)
and (r 7→ −1) for each interval (l, r), and augmenting the table with addition. After splitting
this table at k, we can determine the number of “unmatched” intervals on the left in O(1) time.

We have to be careful about off-by-one errors, though: if an interval ends at k, we need to
subtract 1. This is handled on line ?? below.

Algorithm 1.4. Interval Counting with Augmented Tables.

1 structure Val =
2 struct
3 type t = int
4 val f = op+
5 val I = 0
6 val toString = Int.toString
7 end
8
9 structure Table = MkTreapAugTable (structure Key = IntElt

10 structure Val = Val)
11
12 fun intervalCount I =
13 let
14 val L = Seq.map (fn (l,_) ⇒ (l, 1)) I
15 val R = Seq.map (fn (_,r) ⇒ (r,−1)) I
16 val T = Table.fromSeq (Seq.append (L,R))
17 fun query k =
18 let val (T ′,co,_) = Table.split (T, k)
19 val c = case co of SOME −1 ⇒ −1 | _ ⇒ 0
20 in Table.reduceVal T ′ + c
21 end
22 in
23 query
24 end

Built: October 16, 2017

