Recitation 1

Augmented Tables

1.1 Announcements

e RangelLab has been released, and is due Friday afternoon.

e BridgeLab will be released on Friday. The written portion will be due the following
Friday, while the coding portion will be due the Monday after that.

2 RECITATION 1. AUGMENTED TABLES

1.2 Interval Checking

Suppose you’re given a set of intervals I C Z x Z and some k € Z, and you’re interested in
determining whether or not there exists (/,7) € I such that [< k < r. For simplicity, let’s
assume that no two intervals share an endpoint.

Task 1.1. Implement a function
val intervalCheck : (int » int) Seqg.t — int — bool

where (intervalCheck I k) answers the query mentioned above. Your function
must be staged such that the line

val ¢ = intervalCheck I

performs O(|I|1og |I|) work and O(log® |1|) span, while each subsequent call q(k) only
performs O(log |I|) work and span. Try solving this problem with augmented tables.

We’ll store each (I, r) in a table as (I — r), and augment the table with the function max.
This allows us to determine the rightmost endpoint of a set of intervals in constant time. To
answer the query, we can split [at k to get a set [of all intervals which begin before k. We
then just need to check if any of these have endpoints which are greater than &.

Built: October 16, 2017

1.2. INTERVAL CHECKING

Built: October 16, 2017

4 RECITATION 1. AUGMENTED TABLES

1.3 Interval Counting

Now suppose you want to solve a more general problem. Given I and k, you want to return
{(l,r) € I|l <k < r}|. Once again, for simplicity, we’ll assume all endpoints are distinct.

Task 1.3. Implement a function
val intervalCount : (int * int) Seq.t — int — int

where (intervalCheck I k) answers the interval counting query as mentioned
above. Your function must be staged, just like Task ??.

Similar to parentheses matching, we can use a counter which “increments” at the beginning
of each interval, and “decrements” at the end. This corresponds to building a table of (I — 1)
and (r — —1) for each interval (/,7), and augmenting the table with addition. After splitting
this table at &, we can determine the number of “unmatched” intervals on the left in O(1) time.

We have to be careful about off-by-one errors, though: if an interval ends at k, we need to
subtract 1. This is handled on line ?? below.

Algorithm 1.4. Interval Counting with Augmented Tables.

1 structure Val =
2 struct

3 type t = int

4 val £ = op+

5 val T = 0

6 val toString = Int.toString
7 end

8

9 structure Table = MkTreapAugTable (structure Key = IntEIlt

10 structure Val = Val)
11

12 fun intervalCount I =

13 let

14 val L = Seg.map (fn (I,_) = (l,1)) I

15 val R = Seg.map (fn (_,r) = (r,—1)) I

16 val T = Table.fromSeq (Seqg.append (L,R))

17 fun query k =

18 let val (T’,co,_) = Table.split (T,k)

19 val ¢ = case co of SOME —1 = -1 | _ = 0
20 in Table.reduceval T' + ¢

21 end

22 in

23 query

24 end

Built: October 16, 2017

