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15–210: Parallel and Sequential Data Structures and Algorithms

Exam II (Solutions)

7 April 2017

• Verify There are 17 pages in this examination, comprising 7 questions worth a total of 100
points. The last 2 pages are an appendix with costs of sequence, set and table operations.

• Write the name (e.g., “J. Snow”) of the persons sitting to your left and to your right below
your andrew id (in left to right order).

• Time: You have 80 minutes to complete this examination.

• Goes without saying: Please answer all questions in the space provided with the question.
Clearly indicate your answers.

• Beware: You may refer to your one double-sided 81
2 × 11in sheet of paper with notes, but

to no other person or source, during the examination.

• Primitives: In your algorithms you can use any of the primitives that we have covered in
the lecture, unless otherwise states. A reasonably comprehensive list is provided at the end
and sometimes in the body of the question itself.

• Code: When writing your algorithms, you can use ML syntax or the pseudocode notation
used in the notes or in class. In the questions, we use pseudocode.

• Good luck!

Sections

A 9:30am - 10:20am Andra/Charles
B 10:30am - 11:20am Aashir/Anatol
C 12:30pm - 1:20pm Oliver
D 12:30pm - 1:20pm Rohan/Serena
E 1:30pm - 2:20pm John/Christina
F 1:30pm - 4:20pm Vivek/Teddy
G 3:30pm - 5:20pm Ashwin/Sunny
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Question Points Score

BSTs and Treaps 22

A Sparse Problem 10

(BFS) Multisource Shortest Paths 12

DFS 18

Shortest Paths 13

Contraction Action, what’s Your Reaction? 15

Parallel Bridges 10

Total: 100
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Question 1: BSTs and Treaps (22 points)

(a) (6 points) Suppose we have the keys 1, 2, 3, 4, 5, 6 with priorities p shown below:

key 1 2 3 4 5 6

p(key) 2 5 4 1 6 3

Draw the max-treap (requires that priority at a node is greater than the priority of its
two children) associated with these keys and priorities.

Solution: Recall that Treaps are unique with a given set of keys and priorities. The
only possible solution is:

5

/ \

2 6

/ \

1 3

\

4

(b) (6 points) What is the probability that a treap with n nodes has depth n? You can assume
that the priorities are picked uniformly at random, and that there are no duplicates.

Solution:
2n−1

n!
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(c) (10 points) In lecture you saw an implementation of the union operation on sets repre-
sented as binary search trees. This problem involves the set intersect operation.

To put this code in context, we’re using a binary search tree of the following type to
represent these sets.

datatype BST = Leaf | Node of (BST * BST * key)

Also, recall the following type signatures of split and joinMid:

split(T, k) : BST × key → BST × bool × BST

joinMid(L,m,R) : BST × key × BST → BST

Fill in the blanks in the SML code below that implements intersect.

intersect (T1, T2) =
case T1 of

Leaf ⇒
| Node (L1, R1, k1) ⇒

let (L2, x2, R2) = split(T2, k1)

(L,R) = par( ,

)
in

case x2 of
NONE ⇒

| SOME(a) ⇒
end

Solution:

fun intersect (T1,T2) =

case T1 of

Leaf => Leaf

| Node(L1,R1,k1) =>

let val (L2,x2,R2) = split(T2,k1);

val (L,R) = par(intersect(L1,L2), intersect(R1,R2))

in

case x2 of

NONE => join(L,NONE,R)

| SOME(_) => join(L,x2,R)

end
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Question 2: A Sparse Problem (10 points)
A vector is basically a sequence whose values are real numbers, for example:

〈 2.1, 5.3, 1.2,−2.55, 11.0 〉

Recall that the dot-product of two vectors is an elementwise multiplication followed by a sum.
With sequences this can be implemented as:

dotProduct(A,B) = reduce + 0 〈A[i]×B[i] : 0 ≤ i < |A| 〉

A sparse vector is one in which the value is 0 at most indices. Sparse vectors are common
in practice and can be represented more efficiently as a mapping from the non-zero indices to
their values. For example the vector

〈 0.0, 2.1, 0.0, 1.2, 0.0, 0.0, 0.0, 11.0, 0.0, 0.0 〉

can be represented as
{1 7→ 2.1, 3 7→ 1.2, 7 7→ 11.0}

Your job is to implement dotProduct(A,B) based on this sparse representation. You can use
any of the functions on tables, but the implementation must take O(m log(1 +n/m)) work and
O(log n) span, where m = min(|A|, |B|) and n = max(|A|, |B|), and |A| and |B| indicates the
number of non-zero elements (i.e. the size of the mapping). Please note that the signature for
the Table interface is at the end of the exam. Our solution is one line.

dotProduct (A,B) = reduce + 0 (intersection ∗ A B)
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Question 3: (BFS) Multisource Shortest Paths (12 points)
You are starting a company that supplies maps indicating the proximity of every intersection
in Pittsburgh to the nearest coffee shop. This would be useful if you’re buying coffee in a hurry.
You should assume that all road segments are the same length, but some are one-way streets.
This problem can be defined as follows:

Definition (The multisource unweighted shortest pathlength (MUSP) problem):
Given a directed graph G = (V,E) and a set of sources U ⊆ V determine for every
vertex in v ∈ V its shortest path length from any vertex in U , denoted as δ(U, v).

Please answer the following:

(a) (6 points) Describe an algorithm that solves this problem inO(m lg n) work andO(d log2 n)
span, where n = |V |, m = |E|, and d = maxv∈V δ(U, v). A couple sentences should
suffice—you may justify the cost by relating it to the cost of some algorithm we covered
in class.

Solution: Use breadth first search with U as the initial frontier. The bounds are the
same as given in lecture for BFS.

(b) (6 points) Suppose now you would like to indicate the shortest path length from every
intersection to the nearest coffee shop. That is to say, you want for every vertex in V its
shortest path length to any vertex in U . How would you modify your algorithm above
so that it has the same cost bounds, except that d = maxv∈V δ(v, U)? Give a short
justification.

Solution: Reverse the edges in G and do the same as above. Reversing can be done
with a flatten and collect, which are within the cost bounds given above.
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Question 4: DFS (18 points)

(a) A DFS order is a sequence of vertices of a graph in the order in which they are first visited
by depth-first search (DFS). Consider the following graph:

Question 2: Short Answers (25 points)

(a) (6 points) A DFS order is a sequence vertices of a graph in the order in which they are first
visited by depth-first search (DFS). List all DFS orders for the following graph, starting
from vertex A:

!"#"

$" %"

&"

'"

(b) (9 points) For a vertex that is visited at level i of a breadth first search (BFS) in which
levels j can its neighbors be?

1. For the in-neighbors in a directed graph:

2. For the out-neighbors in a directed graph:

15–210 Exam I 3 of 10 October 4, 2012

One DFS order of this graph is 〈A,B,C,X,H,M 〉.
i. (6 points) List ALL other possible DFS orders for this graph, given source vertex A.

Solution: A B M X H C
A B M H X C
A M H X B C
A M X H B C

ii. (6 points) For the order we gave you, list the forward, the back, and the cross
edges.

Solution: Forward: (A,M)
Cross: (M,X), (M,H)
Back: (H,A)

(b) (6 points) Suppose you perform DFS on an undirected graph G where G is a clique (there
is an edge between every two vertices). In the resulting DFS tree, how many nodes will
have degree greater than 2?
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Question 5: Shortest Paths (13 points)

(a) (2 points) TRUE or FALSE: If you add a positive constant to the weight on every edge
in a weighted graph, it does not change the shortest path tree.

Solution: FALSE

(b) (2 points) TRUE or FALSE: If a graph has negative edge weights, Dijkstra’s algorithm
for shortest path may loop forever.

Solution: FALSE

(c) (2 points) TRUE or FALSE: We can use the Bellman-Ford algorithm to detect negative
cycles in a graph.

Solution: TRUE

(d) (7 points) Given the following graph:

A

B

C

D

E

F

H

G

1

3
5

7 9

2

4

6 8 10

Show the order that the vertices are visited in by Dijkstra’s algorithm, the distance com-
puted from the source A, and the contents of the priority queue after the vertex is visited
(order in priority queue does not matter).

A 1 0 (2,C),(1,B)

B 2 1 (2,C),(4,D)

C 3 2 (4,D),(6,D),(8,E)

D 4 4 (6,D),(9,E),(8,E)

E 5 8 (9,E),(15,F),(16,G)

F 6 15 (24,H),(16,G)

G 7 16 (24,H),(26,H)

H 8 24 (26,H)
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Question 6: Contraction Action, what’s Your Reaction? (15 points)
For each graph property below, state whether or not edge contraction preserves this property.
That is, if a graph has the property before performing an edge contraction, will the graph
necessarily have the property after the contraction? You can assume that duplicate edges are
removed.

Answer Yes or No. Also, if your answer is No, then give a counterexample. That is, give a
graph G and highlight an edge e in G such that G has the given property initially but not after
contracting e.

(a) (3 points) All nodes in the graph have degree ≤ 2.

Solution: Yes

(b) (3 points) All nodes in the graph have degree ≤ 3.

Solution: No:

\_/ contract middle edge

/ \

(c) (3 points) The graph is connected.

Solution: Yes

(d) (3 points) The graph is a tree (single nodes count as trees)

Solution: Yes

(e) (3 points) The graph has more edges than vertices.

Solution: No. A complete graph on 4 vertices (6 edges) will contract to a complete
graph on 3 vertices (3 edges)
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Question 7: Parallel Bridges (10 points)
In BridgeLab you found bridges of a graph using DFS, sequentially. Recall that a bridge in a
undirected connected graph is any edge that does not belong to any cycles. It is also possible
to do it in parallel in linear work using the following approach—each step can be parallelized.

1. Find a spanning tree T of G.

2. Select one vertex r to be the root of the tree T

3. Give an preorder numbering (preNum) to the nodes in the T starting at the root r.
Recall that a pre-order numbering first numbers the root, then recursively numbers each
of the subtrees. Here is an example:

0

1

2 3
4

5 6

7

9

8

r Edges of T (directed from the root r)

Other edges of G

4. For every vertex, determine the minimum and maximum pre-order number of its neighbors
in G, not including its parent in T . In the example, 3s min is 2 and max is 4.

5. For each vertex, determine

• minSubNgh: the minimum neighbor in its subtree (the minimum in the subtree of
the minimum values calculated in the previous step),

• maxSubNgh: the maximum neighbor in its subtree (the maximum in the subtree of
the maximum values calculated in the previous step),

• maxPreNum: the maximum pre-order number of its subtree

For the example graph:
minSubNgh[3] = 2, maxSubNgh[3] = 7, maxPreNum[3] = 4,
minSubNgh[5] = 4, maxSubNgh[5] = 9, maxPreNum[5] = 9.

(a) (4 points) Argue in one or two sentences that if an edge (u, v) is a bridge then it must be
in the spanning tree found in step 1.

Solution: If there is is no cycle involving (u, v) then the only way to connect u and
v is with the edge between them, and therefore it must be in the spanning tree.

(b) (6 points) Given an edge (u, v) ∈ T , with u the parent, write an equation for determining
if it is a bridge based on the values of preNum[u], preNum[v], minSubNgh[u], min-
SubNgh[v], maxSubNgh[u], maxSubNgh[v], maxPreNum[u], and maxPreNum[v].

Solution: (u, v) is a bridge if minSubNgh[v] ≥ preNum[v] and maxSubNgh[v] ≤
maxPreNum[v].
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Scratch Work:
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Scratch Work:
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Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq
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val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $ : ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O
(

n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m+ n) O(lg(m+ n))

append (s,t)
if |s| = n, and |t| = m

O(m+ n) O(1)
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signature TABLE =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type ’a t

type ’a table = ’a t

structure Set : SET where Key = Key and Seq = Seq

val size : ’a table -> int

val domain : ’a table -> Set.t

val range : ’a table -> ’a Seq.t

val toString : (’a -> string) -> ’a table -> string

val toSeq : ’a table -> (Key.t * ’a) Seq.t

val find : ’a table -> Key.t -> ’a option

val insert : ’a table * (Key.t * ’a) -> ’a table

val insertWith : (’a * ’a -> ’a) -> ’a table * (Key.t * ’a) -> ’a table

val delete : ’a table * Key.t -> ’a table

val empty : unit -> ’a table

val singleton : Key.t * ’a -> ’a table

val tabulate : (Key.t -> ’a) -> Set.t -> ’a table

val collect : (Key.t * ’a) Seq.t -> ’a Seq.t table

val fromSeq : (Key.t * ’a) Seq.t -> ’a table

val map : (’a -> ’b) -> ’a table -> ’b table

val mapKey : (Key.t * ’a -> ’b) -> ’a table -> ’b table

val filter : (’a -> bool) -> ’a table -> ’a table

val filterKey : (Key.t * ’a -> bool) -> ’a table -> ’a table

val reduce : (’a * ’a -> ’a) -> ’a -> ’a table -> ’a

val iterate : (’b * ’a -> ’b) -> ’b -> ’a table -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a table -> (’b table * ’b)

val union : (’a * ’a -> ’a) -> (’a table * ’a table) -> ’a table

val intersection : (’a * ’b -> ’c) -> (’a table * ’b table) -> ’c table

val difference : ’a table * ’b table -> ’a table

val restrict : ’a table * Set.t -> ’a table

val subtract : ’a table * Set.t -> ’a table

val $ : (Key.t * ’a) -> ’a table

end
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signature SET =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type t

type set = t

val size : set -> int

val toString : set -> string

val toSeq : set -> Key.t Seq.t

val empty : unit -> set

val singleton : Key.t -> set

val fromSeq : Key.t Seq.t -> set

val find : set -> Key.t -> bool

val insert : set * Key.t -> set

val delete : set * Key.t -> set

val filter : (Key.t -> bool) -> set -> set

val reduceKey : (Key.t * Key.t -> Key.t) -> Key.t -> set -> Key.t

val iterateKey : (’a * Key.t -> ’a) -> ’a -> set -> ’a

val union : set * set -> set

val intersection : set * set -> set

val difference : set * set -> set

val $ : Key.t -> set

end
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MkTreapTable Work Span

size T O(1) O(1)

filter f T ∑
(k 7→v)∈T

W (f(v)) lg |T |+ max
(k 7→v)∈T

S(f(v))
map f T

tabulate f X
∑
k∈X

W (f(k)) max
k∈X

S(f(k))

reduce f b T
if f does constant work

O(|T |) O(lg |T |)

insertWith f (T,(k,v))
if f does constant work O(lg |T |) O(lg |T |)

find T k
delete (T,k)

domain T
O(|T |) O(lg |T |)range T

toSeq T

collect S
O(|S| lg |S|) O(lg2 |S|)

fromSeq S

For each argument pair (A,B) below, let n = max(|A|, |B|) and m = min(|A|, |B|).

MkTreapTable Work Span

union f (X,Y )

O
(
m lg(n+m

m
)
)

O
(
lg(n+m)

)intersection f (X,Y )

difference (X,Y )

restrict (T,X)

subtract (T,X)
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