
Full Name:

Andrew ID: Section:

15–210: Parallel and Sequential Data Structures and Algorithms

Practice Exam I

February 2017

• There are 11 pages in this examination, comprising 6 questions worth a total of 99 points.
The last few pages are an appendix detailing some of the 15-210 library functions and their
cost bounds.

• You have 80 minutes to complete this examination.

• Please answer all questions in the space provided with the question. Clearly indicate your
answers.

• You may refer to your one double-sided 81
2 × 11in sheet of paper with notes, but to no other

person or source, during the examination.

Circle the section YOU ATTEND

Sections

A 9:30am - 10:20am Andra/Charles
B 10:30am - 11:20am Aashir/Anatol
C 12:30pm - 1:20pm Oliver
D 12:30pm - 1:20pm Rohan/Serena
E 1:30pm - 2:20pm John/Christina
F 1:30pm - 4:20pm Vivek/Teddy
G 3:30pm - 5:20pm Ashwin/Sunny

15–210 Practice Exam I 1 of 11 February 2017

Full Name: Andrew ID:

Question Points Score

Recurrences 20

Short Answers 21

Missing Element 12

Interval Containment 13

Quicksort 17

Parentheses Revisited 16

Total: 99

15–210 Practice Exam I 2 of 11 February 2017

Question 1: Recurrences (20 points)
Recall that f(n) is Θ(g(n)) if f(n) ∈ O(g(n)) and g(n) ∈ O(f(n)). Give a closed-form solution
in terms of Θ for the following recurrences. Also, state whether the recurrence is dominated at
the root, the leaves, or equally at all levels of the recurrence tree.

You do not have to show your work, but it might help you get partial credit.

(a) (4 points) f(n) = 5f(n/5) + Θ(n)

(b) (4 points) f(n) = 3f(n/2) + Θ(n2)

(c) (4 points) f(n) = f(n/2) + Θ(lg n)

(d) (4 points) f(n) = 5f(n/8) + Θ(n2/3)

(e) (4 points) f(n) = f(n/2) + f(n/4) + Θ(log n)
This one does not need a closed form solution.

15–210 Practice Exam I 3 of 11 February 2017

Question 2: Short Answers (21 points)

(a) (5 points) Assume you are given a function f : int Seq.t × int Seq.t → int Seq.t

where f(A,B) requires O
(
(|A|+ |B|)2

)
work and O(log(|A| + |B|)) span, and returns a

sequence of length |A| + |B|. Give the work and span of the following function as tight
Big-O bounds in terms of |S|.

fun foo S =

Seq.reduce f (Seq.empty ()) (Seq.map Seq.singleton S)

(b) (7 points) Suppose we implement a function fastJoin which has the same specification
as the BST function join, except that it requires only O(log(min(|T1|, |T2|))) work and
span for inputs T1 and T2. Give the work and span of the following function as tight Big-O
bounds in terms of |S|. Assume S is presorted by key.

fun bar S =

Seq.scan Tree.fastJoin (Tree.empty ()) (Seq.map Tree.singleton S)

(c) (5 points) Implement reduce using contraction. You can assume the input length is a
power of 2.

15–210 Practice Exam I 4 of 11 February 2017

(d) Guessing Games I am thinking of a random non-negative integer, X. Of course, I can’t
mean uniformly random, as that would mean that at least half the time I’m thinking of
an infinite integer! As it turns out, the expected value of positive integers I think of is
1000.

i. (4 points) For some reason, I like to choose 15210 a lot. Give an upper bound on
the probability with which I can choose X = 15210 (while still obeying the condition
E[X] = 1000).

15–210 Practice Exam I 5 of 11 February 2017

Question 3: Missing Element (12 points)
For 15210, there is a roster of n unique Andrew ID’s, each a string of at most 9 characters
long (so String.compare costs O(1)).

In this problem, the roster is given as a sorted string sequence R of length n. Additionally,
you are given another sequence S of n − 1 unique ID’s from R. The sequence S is not
necessarily sorted. Your task is to design and code a divide-and-conquer algorithm to find
the missing ID.

(a) (7 points) Write an algorithm in SML that has O(n) work and O(log2 n) span.

(* Invariant: |R| = |S|+1 *)
fun missingElt (R: string Seq.t, S: string Seq.t) : string =
let

fun lessThan a b = (String.compare(b, a)=LESS) % is b<a?
in

case (length R)
of 0 ⇒ raise Fail "should not get here"

| 1 ⇒
| n ⇒ % recursive step

let val p =
val Sleft = Seq.filter (lessThan p) S

val Sright = Seq.filter (not o (lessThan p)) S

val Rleft =

val Rright =

in

end
end

(b) (5 points) Give a brief justification of why your algorithm meets the cost bounds.

15–210 Practice Exam I 6 of 11 February 2017

Question 4: Interval Containment (13 points)
An interval is a pair of integers (a, b). An interval (a, b) is contained in another interval (α, β)
if α < a and b < β. In this problem, you will design an algorithm

count: (int * int) seq → int

which takes a sequence of intervals (i.e., ordered pairs) (a0, b0), (a1, b1), . . . , (an−1, bn−1) and
computes the number of intervals that are contained in some other interval. If an interval is
contained in multiple intervals, it is counted only once.

For example, count 〈(0, 6), (1, 2), (3, 5)〉 = 2 and count 〈(1, 5), (2, 7), (3, 4)〉 = 1. Notice that
the interval (3, 4) is contained in both (1, 5) and (2, 7), but the count is 1.

You can assume that the input to your algorithm is sorted in increasing order of the first
coordinate and that all the coordinates (the ai’s and bi’s) are distinct.

(a) (5 points) Give a brute force solution to this problem (code or prose).

(b) (8 points) Design an algorithm that has O(n) work and O(log n) span. Carefully explain
your algorithm; you don’t have to write code. Hint: The algorithm is short.

15–210 Practice Exam I 7 of 11 February 2017

Question 5: Quicksort (17 points)
Assume throughout that all keys are distinct.

(a) (3 points) TRUE or FALSE. In randomized quicksort, each key is involved in the same
number of comparisons.

(b) (7 points) What is the probability that in randomized quicksort, a random pivot selection
on an input of n keys leads to recursive calls, both of which are no smaller than n

16? Show
your work.

(c) (7 points) Consider running randomized quicksort on a permutation of 1, . . . , n. What is
the probability that a quicksort call tree has height exactly n? Note: the height of a tree
is the number of nodes on its longest path.

15–210 Practice Exam I 8 of 11 February 2017

Question 6: Parentheses Revisited (16 points)
A parenthesis expression is called immediately paired if it consists of a sequence of open-close
parentheses — that is, of the form ”()()()() . . . ()”.

(a) (8 points) Longest immediately paired subsequence (LIPS) problem. Given a
(not necessarily matched) parenthesis sequence s, the longest immediately paired sub-
sequence problem requires finding a (possibly non-contiguous) longest subsequence of
s that is immediately paired. For example, the LIPS of “(((((((()()())))()(((()(())” is
“()()()()()()” as highlighted in the original sequence.

Write a function that computes the length of a LIPS for a given sequence. Your function
should have O(n) work and O(lg n) span.

(Hint: Try to find a property that simplifies computing LIPS. This problem might be
difficult to solve otherwise.)

datatype paren = L | R

fun findLIPS (s: paren Seq.t) : int =

(b) (8 points) Prove succintly that your algorithm correctly computes LIPS.

%inputtreaps

15–210 Practice Exam I 9 of 11 February 2017

Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

15–210 Practice Exam I 10 of 11 February 2017

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq

val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $: ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m+ n) O(lg(m+ n))

append (s,t)
if |s| = n, and |t| = m

O(m+ n) O(1)

15–210 Practice Exam I 11 of 11 February 2017

