
Abstract Type of Maps

Robert Harper

October 13, 2017

We will make use of a class of ordered types:

data order = LSS | EQL | GTR
signature ORD = sig

type t

val compare : t × t → order

val = : t × t → bool

val ≤ : t × t → bool

end

The class of monoids on a type of generators:

signature MONOID = sig
type g

type t

val e : t

val * : t × t → t

val i : g → t

end

These are understood to satisfy the monoid laws (associativity and unit laws),
with * as multiplication and e as unit element.

We will need the data type

data α inf = −∞ | i of α | ∞,

which extends an argument type with points at infinity. If the type t is an
ordered type, then the type t inf may be ordered such that −∞ is smaller
than any value i(v), all of which values are themselves smaller than ∞, and
−∞ is smaller than∞.

1

The abstract type of maps from keys to elements, with reduced values, is
specified by the following signature:

signature MAP = sig
structure Key : ORD

type key = Key.t

type elt

type entry = key × elt

structure RVal : MONOID with g=entry

type rval = RVal.t

type map

val emp : map

val sing : entry → map

(* keys in left must be strictly smaller than those in right *)

val join : map × map → map

(* split at a key, return associated element, present *)

val split : map → key → map × elt option × map

type α mon = α × (entry → α) × (α × α → α)

val mapred : α mon → map → α

(* generic reduced value *)

val rval : map → rval

(* constant-time computations *)

val size : map → int

val minkey : map → key inf

val maxkey : map → key inf

end

The type map is to be thought of as the free monoid on values of type entry
as generators. That is to say, we have the following structures:

structure Map :> MAP = . . .

structure MapAsMonoid : MONOID = struct
type g = Map.entry

type t = Map.map

2

val e = Map.emp

val i = Map.sing

val * = Map.join

end

Moreover, Map.emp and Map.join satisfy the monoid laws. Consequently,
the first argument to mapred must itself satisfy the monoid laws in order for
the result to be well-defined.

The semantics of mapred(e,i,*) is specified by the equations in the con-
text of an open Map structure:

mapred (e,i,*) emp = e

mapred (e,i,*) (sing p) = i(p)

mapred (e,i,*) (join (m1, m2)) =

(mapred (e,i,*) m1) * (mapred (e,i,*) m2)

In particular we may define size to be

mapred (0,const 1,+),

which computes the number of entries in a map. Similarly, we may define
minkey to be

mapred (∞,λ (k,_)⇒k,max)

and maxkey to be

mapred(−∞,λ (k,_)⇒k,min).

Here min and max are to be taken in the sense of the extended ordering with
points at infinity.

The mapred operation may be used to implement

filter : (entry → bool) → map → map

as folows:

filter p =

mapred (emp, λx ⇒ if p x then sing x else emp, join).

That is, each entry is replaced by either the empty or the singleton map, accord-
ing to whether the predicate holds of it or not, and these are joined to obtain
the filtered map.

The split operation behaves according to the following equations:

split (emp, k) = (emp, Nothing, emp)

split (sing (k,v), k’) =

if k=k’ then
(emp, Just v, emp)

3

else if k<k’ then
(sing (k,v), Nothing, emp)

else
(emp, Nothing, sing (k,v))

split (join (m1,m2),k) =

if k ≤ maxkey m1 then
let (m11, o, m12) = split (m1, k) in (m11, o, join (m12, m2))

else
let (m21, o, m22) = split (m2, k) in (join (m1, m21), o, m22)

We may define

find : Map.map * Map.key → Map.elt option

in terms of split as follows:

find(m,k) = let (_, o, _) = split (m, k) in o.

As an exercise, you may use the foregoing equations governing split to de-
rive equations that specify the behavior of find to be as expected.

Reduced values are a way to maintain the result of mapred for a particular
monoid during the construction of the map so that the result may be computed
in constant time. The key equation is that if the reduced value computation is
given by (e,i,*), in such a way that it obeys the monoid laws, then

rval m = mapred (e,i,*) m

That is, the reduced value is the reduction of the map according to the specified
monoid! For example, we may maintain the size of a map as a reduced value
using the monoid structure specifed earlier so that it may be determined in con-
stant time. Similarly, the largest and smallest keys in a map may be maintained
as reduced values using the same method.

Reduced values are implemented using augmentation: the underlying tree
structure is enriched with an additional construct that holds the augmented
values associated with each tree. In the present case we associate a generic
augmented value of type rval, as well as the size of type int and the mini-
mum and maximum keys, both of type key inf.

data tree = Tree of bst * rval * int * key inf * key inf

and bst = Empty | Node of tree * entry * tree

Notice that the augmented values are intertwined among the nodes of the
binary search tree, and surround each empty binary search tree. The “entry
point” is the type tree; the type bst is an “auxiliary” used to represent the
internal structure of the tree.

4

The augmented values may be maintained using smart constructors, which
create empty and non-empty trees, respectively.

val empty = Tree of (Empty, RVal.e, 0, ∞, −∞)

val node =

λ (lt as Tree (lb, lr, ls, li, la), kv,

rt as Tree (rb, rr, rs, ri, ra)) ⇒
Tree

(Node (lb, kv, rb),

RVal.* (lr, rr),

ls+rs,

min (li, ri),

max (la, ra))

The smart constructors, empty and node, maintain the reduced values accord-
ing to their definitions in terms of mapred.

Finally, it often helps to structure the implementation using an expose op-
eration of type tree→bst that “exposes” the underlying structure of the tree
for pattern-matching purposes. Doing so provides only one level deep of pat-
tern matching, but this is sufficient for nearly all situations.

5

