
A Cost Semantics for Parallelism

September 14, 2017

Functional Core Language

We will work with a minimal functional language for expressing parallel
algorithms that act on values of a fixed collection of recursive data types.

Syntax of types:

τ ::= ti ith data type
τ1 × · · · × τn n-tuple type
τ1 ⇀ τ2 partial functions

Syntax of expressions and patterns:

e ::= x variable
c e constructor instance
case e { c1 p1 ↪→ e1 | · · · | cn pn ↪→ en }

case analysis
〈e1, . . . , en〉 n-tuple
funx(p) is e recursive function
e1(e2) application
error error

p ::= x variable pattern
wildcard pattern

〈p1, . . . , pn〉 tuple pattern

Substitution of a closed value, v, for free occurrences of x in e, written
[v/x]e, is defined as usual. It amounts to replacing free occurrences of x

1

with v, there being no possibility of capture. Substitution is extended to
patterns, written [[v/p]]e, as follows:

[[v/x]]e = [v/x]e

[[v/]]e = e

[[〈v1, . . . , vn〉/〈p1, . . . , pn〉]]e = [[v1/p1]]. . . [[vn/pn]]e

The idea is that tuples are broken apart during substitution, so that, for
example, substitution of 〈v1, . . . , vn〉 for the pattern 〈x1, . . . , xn〉 in an ex-
pression e is tantamount to replacing each xi with vi within e.

We assume given a collection of m data types

data ti is ci1 of τi1 | · · · | cini
of τini

(1 ≤ i ≤ m,m ≥ 0).

Among these we assume the following data types as given:1

1. datavoid is (no constructors)

2. databool is true | false

3. datanat is zero | succ of nat

4. datalist is nil | cons of bool× list.

The cost semantics is given by the following judgments:

e val e is a value (that is, it is fully evaluated)
e ⇓ v [w; s] e evaluates to v with work w and span s
e ⇑ [w; s] e aborts with an error with work w and span s
e m [w; s] e either evaluates or aborts with work w and span s

These judgements are inductively defined by a collection of rules of the
form

J1 . . . Jn
J

where n ≥ 0, and J and each of the Ji’s are judgments. Informally, the
meaning of the rule is that J holds whenever J1, . . . , Jn all hold. Impor-
tantly, a judgment J is said to hold exactly when it can be derived by
composing rules that end with J .2

1An omitted “of” specification means the same as saying of unit.
2This is what makes it an inductive definition.

2

For the sake of readability, the rules are given in three parts, those that
define values, those that define evaluation, and those that define error
propagation.

The rules defining what are the values are as follows:

e val
c e val funx(p) is e val

e1 val . . . en val

〈e1, . . . , en〉 val
We often use the letter v to stand for an expression that is also a value
according to these rules.

The rules defining evaluation are as follows:

e val
e ⇓ e [1; 1]

e ⇓ v [w; s] ¬(e val)
c e ⇓ c v [w + 1; s+ 1]

e ⇓ cj vj [w; s] [[vj/pj]]ej ⇓ v′j [wj; sj]

case e { c1 p1 ↪→ e1 | · · · | cn pn ↪→ en } ⇓ v′j [w + wj + 1;max(s, sj) + 1]

e1 ⇓ v1 [w1; s1] e2 ⇓ v2 [w2; s2] [[v2/p]][v1/x]e ⇓ v [w; s] v1 = funx(p) is e

e1(e2) ⇓ v [w1 + w2 + w + 1;max(s1, s2) + s+ 1]

e1 ⇓ v1 [w1; s1] . . . en ⇓ vn [wn; sn] ¬(〈e1, . . . , en〉 val)
〈e1, . . . , en〉 ⇓ 〈v1, . . . , vn〉 [1 +

∑n
i=1wi; 1 + maxni=1 si]

Thus, values evaluate to themselves with unit work and span.3 Con-
structed expressions that are not already evaluated add unit work and
span to account for creating the value. Case analysis imposes unit work
and span to dispatch on the constructor of the value. Similarly, applica-
tion charges one unit of work and span for the call to the function and its
return. Creating a tuple imposes an additional unit cost for creating the
tuple.4

3For this to be realistic imposes the requirement on an implementation that a con-
structed value, no matter how large, be recognizable in constant time. Standard imple-
mentation methods satisfy this requirement.

4It might be argued that the additional cost should be n, the number of components
of the tuple, but since n is constant (not dependent on input), it is sufficient to charge one
unit of cost, which is accurate up to a scale factor.

3

It might be thought that errors simply abort the computation, and that’s
all there is to be said. But, after all, an error is the outcome of a compu-
tation, and we must account for the effort of computing it. Interestingly,
the cost of an error is markedly different in a parallel language than in
a sequential one. Consider the evaluation of an n-tuple expression. In a
sequential language the components are evaluated from left to right, and
the computation of the tuple stops as soon as an error occurs. In particular
those components not yet evaluated at the point of the error need never
be evaluated, and hence impose no cost. In a parallel language, however,
there is no well-defined notion of “stopping early” in this sense. All com-
ponents are evaluated simultaneously, and this cost is incurred even if one
of the components incurs an error. The error is propagated upwards, but
only after all other components have finished evaluating (perhaps incur-
ring an error).

The rules governing error propagation are as follows:

error ⇑ [1; 1]

e ⇑ [w; s]

c e ⇑ [w + 1; s+ 1]

e ⇑ [w; s]

case e { c1 p1 ↪→ e1 | · · · | cn pn ↪→ en } ⇑ [w + 1; s+ 1]

e ⇓ cj vj [w; s] [[vj/pj]]e
′
j ⇑ [wj; sj]

case e { c1 p1 ↪→ e1 | · · · | cn pn ↪→ en } ⇑ [w + wj + 1; s+ sj + 1]

e1 ⇑ [w1; s1] e2 m [w2; s2]

e1(e2) ⇑ [1 + w1 + w2 + 1; 1 + max(s1, s2) + 1]

e1 m [w1; s1] e2 ⇑ [w2; s2]

e1(e2) ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

e1 m [w1; s1] . . . ej ⇑ [wj; sj] . . . en m [wn; sn]

〈e1, . . . , en〉 ⇑ [1 +
∑n

i=1wi; 1 + maxni=1 si]

Some remarks:

1. Define λx.e to mean fun (x) is e, with an irrelevant name for the
function itself, and define letx be e1 in e2 to mean (λx.e2)(e1). As
an exercise, derive the cost semantics for letx be e1 in e2 from this
definition.

4

2. Define if ethen e1 else e2 to mean case e {true ↪→ e1 | false ↪→ e2 }.
Derive the cost semantics for the conditional from this definition.

3. It is possible to reduce everything to just λ-abstraction and applica-
tion (and variables) using (a) Church’s encodings of data, and (b)
Kleene’s Y combinator.

4. Consider the possibility of there being more than one form of error.
How must the cost semantics change to account for this? Hint: think
carefully about n-tuples!

The cost semantics defines an abstract notion of work and span in the
sense that the units of work represent fixed-cost computations that have
to be performed, but ignoring the specifics of exactly what is involved in
each case. The true cost is a constant factor of the abstract cost, a detail
that we shall ignore in this overview.

The abstract cost may be related to the true cost on a p-processor mul-
tiprocessor by what is called a Brent-type Theorem, which establishes the
following bounds on the time t required to evaluate an expression with
work w and span s on such a platform:

max(w/p, s) ≤ t ≤ w/p+ s.

The first inequality states that the running time is bounded below by the
larger of w/p and s, meaning that work is done in chunks of p at a time
insofar as that is possible, up to the fundamental limit imposed by the
span. Intuitively, if a computation consists of a long chain of sequentially
dependent calculations, then one cannot execute it faster than the span,
regardless of how many processors one may have available. On the other
hand, if the computation has a lot of independent chunks of work, then
the best we can do is perform it in chunks of p at a time, keeping each pro-
cessor busy. The second inequality says that there is a way to schedule the
evaluation so that it takes no more than the sum of the same two factors,
which is at most twice the stated lower bound. The main idea is to use
a so-called greedy scheduler that ensures that no processor remains idle
when there is work to be done, thereby maximizing progress on the work.

5

Bounded Arithmetic and Arrays

Fix a parameter b > 0, representing the number of bits in an unsigned
fixed-length number. The type int is the type of such numbers, with the
parameter b being implicit (and fixed).5

Bounded integer constants and operations:

e ::= n numeric literal
e1 ⊕ e2 addition
e1 	 e2 cut-off subtraction

Their cost semantics (omitting subtraction for brevity):

0 ≤ n < 2b

n val
n ≥ 2b

n ⇑ [1; 1]

e1 ⇓ n1 [w1; s1] e2 ⇓ n2 [w2; s2] n = n1 + n2 < 2b

e1 ⊕ e2 ⇓ n [w1 + w2 + 1;max(s1, s2) + 1]

e1 ⇓ n1 [w1; s1] e2 ⇓ n2 [w2; s2] n = n1 + n2 ≥ 2b

e1 ⊕ e2 ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

e1 ⇑ [w1; s2] e2 m [w2; s2]

e1 ⊕ e2 ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

e1 m [w1; s2] e2 ⇑ [w2; s2]

e1 ⊕ e2 ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

Each operation on int has constant work and span, and alway yields a
value that is within range. The key is the a priori bound, otherwise it is
impossible to perform arithmetic in constant time. An out of range com-
putation is an error, as opposed to a more typical convention of “wrapping
around” silently.

Arrays are the primitive notion from which more useful notions of se-
quence are implemented. An array is a collection of values indexed by
an int, a bounded unsigned integer. Restriction of the index to int’s is
necessary to ensure that array access takes constant work and span.

5It seems that one could instead consider a family of types int[b] parameterized by
the bit length, but it would be overkill for present purposes.

6

Array operations:

e ::= 〈〈v0, . . . , vn−1〉〉n array value
〈e2 | 0 ≤ x < e1〉 tabulate an array
|e| length of an array
e1[e2] element of an array

The rules defining evaluation of array expressions are as follows:

v0 val . . . vn−1 val

〈〈v0, . . . , vn−1〉〉n val

e1 ⇓ n [w; s] [0/x]e2 ⇓ v0 [w0; s0] . . . [n− 1/x]e2 ⇓ vn−1 [wn−1; sn−1]

〈e2 | 0 ≤ x < e1〉 ⇓ 〈〈v0, . . . , vn−1〉〉n [w + (
∑n−1

i=0 wi) + 1; s+ (maxn−1i=0 si) + 1]

e ⇓ 〈〈v0, . . . , vn−1〉〉n [w; s]

|e| ⇓ n [w + 1; s+ 1]

e1 ⇓ 〈〈v0, . . . , vn−1〉〉n [w1; s1] e2 ⇓ k [w2; s2] k < n

e1[e2] ⇓ vk [w; s]
An array value is an indexed collection of values labelled with its size.
Tabulation creates an array of a given size from an expression that com-
putes the ith element as a function of i. Tabulation charges one unit of cost
for creating the array.6 Selecting an element of an array takes unit work
and span, and incurs an error if the index of the element is out of bounds.

The error rules pertaining to arrays are as follows:

e1 ⇓ n [w; s] [0/x]e2 m [w0; s0] . . . [j/x]e2 ⇑ [wj; sj] . . . [n− 1/x]e2 m [wn−1; sn−1]

〈e2 | 0 ≤ x < e1〉 ⇑ [w + (
∑n−1

i=0 wi) + 1; s+ (maxn−1i=0 si) + 1]

e ⇑ [w; s]

|e| ⇑ [w + 1; s+ 1]

e1 ⇓ 〈〈v0, . . . , vn−1〉〉n [w1; s1] e2 ⇓ k [w2; s2] k ≥ n

e1[e2] ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

e1 ⇑ [w1; s1] e2 m [w2; s2]

e1[e2] ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

6This choice is justified by the restriction of the size to an int, the type of bounded
unsigned integers.

7

e1 m [w1; s1] e2 ⇑ [w2; s2]

e1[e2] ⇑ [w1 + w2 + 1;max(s1, s2) + 1]

If any component of a tabulated array incurs an error, then the tabulate
also incurs an error. As with n-tuples, the cost incurs that of evaluating
all other components, because of parallelism. Accessing a component out-
side of the range of an array incurs an error. In all other cases errors are
propagated from the component expressions.

The subarray, or restriction, operation, e[e1..e2], computes the array of
length e2 − e1 given by the elements of e from e1 up to e2. It is easily
definable from tabulate:7

〈e[e1 ⊕ x] | 0 ≤ x < e2〉.

However, this formulation takes linear work and constant span. By mak-
ing restriction a primitive operation we can implement it with constant
work and span. The main idea is to generalize array values to have the
form

〈〈v0, . . . , vm−1〉〉kn
where k ⊕ n ≤ m. This value represents the length-n segment starting at
index k of the underlying length-m array. The evaluation rules for the ar-
ray primitives all change slightly to accommodate this more general form
of value, but without changing their costs. The restriction operation can
then be specified as having unit work and span. The rules are as follows:

v0 val . . . vm−1 val n⊕ k ≤ m

〈〈v0, . . . , vm−1〉〉kn val

e1 ⇓ n [w; s] [0/x]e2 ⇓ v0 [w0; s0] . . . [n− 1/x]e2 ⇓ vn−1 [wn−1; sn−1]

〈e2 | 0 ≤ x < e1〉 ⇓ 〈〈v0, . . . , vn−1〉〉0n [w + (
∑n−1

i=0 wi) + 1; s+ (maxn−1i=0 si) + 1]

e ⇓ 〈〈v0, . . . , vm−1〉〉kn [w; s]

|e| ⇓ n [w + 1; s+ 1]

e1 ⇓ 〈〈v0, . . . , vm−1〉〉kn [w1; s1] e2 ⇓ i [w2; s2] i < n

e1[e2] ⇓ vk⊕i [w; s]
e ⇓ 〈〈v0, . . . , vm−1〉〉kn [w; s] e1 ⇓ i [w1; s1] e2 ⇓ j [w2; s2] i ≤ j < n

e[e1..e2] ⇓ 〈〈v0, . . . , vm−1〉〉k⊕ij	i [w + w1 + w2 + 1;max(s, s1, s2) + 1]

7This formulation ignores checking for bounds errors, which may be easily added.

8

e ⇓ 〈〈v0, . . . , vm−1〉〉kn [w; s] e1 ⇓ i [w1; s1] e2 ⇓ j [w2; s2] j ≥ n

e[e1..e2] ⇑ [w + w1 + w2 + 1;max(s, s1, s2) + 1]

The other error rules remain essentially as before, taking into account the
new form of array value, and, as before, errors propagate through restric-
tion operations.

The operation e1\e2, called injection, or multiple update, modifies an
array, e1, by a given sequence of index-value pairs, e2. If a given index is
updated more than once by e2, the rightmost one determines the value at
that index. Any out of bounds indices incur an error at run-time. Multi-
ple update may be easily reduced to an iterated usage of a single-update
primitive, which itself may be defined using tabulate with work propor-
tional to the size of the array, and constant span. The work of the multiple
update is then proportional to the product of the sizes of the given arrays,
and the span is proportional to the number of updates. An alternative is to
take multiple update as a primitive, with work proportional to the number
of updates and constant span.8

8Additive work and linear span is achievable using only benign effects; constant span
relies on machine support.

9

