
Recitation 1

Parenthesis Matching

1.1 Announcements

• Welcome to 15-210!

• The course website is http://www.cs.cmu.edu/˜15210/. It contains the syl-
labus, schedule, library documentation, staff contact information, and other useful re-
sources.

• We will be using Piazza (https://piazza.com/) as a hub for course announce-
ments and general questions pertaining to the course. Please check it frequently to make
sure you don’t miss anything.

• The first homework assignment, ParenLab, has been released! It’s due Monday at
11:59pm. There will be a second part released next Monday, which will be due the
following Friday. Most homeworks will then have Friday due dates.

• Homeworks will be distributed through Autolab (https://autolab.cs.cmu.edu/).
You will submit coding tasks on Autolab, and written tasks on Gradescope (https:
//gradescope.com/).

• ParenLab is conceptually difficult, so be sure to get started early.

1

http://www.cs.cmu.edu/~15210/
https://piazza.com/
https://autolab.cs.cmu.edu/
https://gradescope.com/
https://gradescope.com/

2 RECITATION 1. PARENTHESIS MATCHING

1.2 Parentheses and Matched Sequences

Suppose you are given a sequence of parentheses. You want to determine if it is matched,
meaning “properly nested”. Let’s begin by defining this more carefully.

Definition 1.1. A matched sequence of parentheses p is defined inductively as

p ::= 〈〉 | p p | (p)

In other words, a matched sequence is one of (a) the empty sequence, (b) the concate-
nation of two matched sequences, or (c) a pair of parentheses surrounding a matched
sequence.

To be consistent with ParenLab, we’ll implement parentheses as a custom datatype given in a
structure Paren.

structure Paren =
struct

datatype t = L | R
...

end

Our goal is to implement a function

val parenMatch : Paren.t Seq.t → bool

where (parenMatch S) determines whether or not S is a matched sequence.

Note that you will need to familiarize yourself with the 210 library. Documentation can be
found on the course website at http://www.cs.cmu.edu/˜15210/docs/. In particu-
lar, you should look closely at the SEQUENCE interface and the ArraySequence implemen-
tation.

Built: August 29, 2016

http://www.cs.cmu.edu/~15210/docs/

1.3. FROM LEFT TO RIGHT 3

1.3 From Left to Right

Task 1.2. Implement parenMatch using the sequence function iterate.

This algorithm is fairly simple: we just iterate a counter across
the sequence. Starting from 0, we increment it at each sighting
of a left-parenthesis, and decrement it at each right-parenthesis. If
the counter never goes negative and its final value is 0, then the
sequence is matched.

In terms of implementation, we’ll actually use the type int
option for the counter. Instead of letting it go negative, we’ll set
it to NONE, and then carry the NONE through to the end. (Alterna-
tively, we could raise an exception and then handle it outside the
iterate, but using an option is a bit cleaner.)

Algorithm 1.3. Iterative parenthesis matching.

1 fun parenMatch S =
2 let
3 fun adjustCounter (x, p) =
4 case x of
5 NONE ⇒ NONE
6 | SOME c ⇒
7 case p of
8 Paren.L ⇒ SOME (c+ 1)
9 | Paren.R ⇒ if c = 0 then NONE else SOME (c− 1)

10 in
11 Seq.iterate adjustCounter (SOME 0) S = SOME 0
12 end

Remark 1.4. The sequence function iterate is nearly identical to the list function
foldl. The only differences are that it operates on sequences, and its function argu-
ment expects a pair in swapped order:

val iterate : (β * α → β) → β → α seq → β

val foldl : (α * β → β) → β → α list → β

We type iterate in this way to emphasize that it operates from left to right.

Built: August 29, 2016

4 RECITATION 1. PARENTHESIS MATCHING

1.4 Divide and Conquer

Task 1.5. Implement parenMatch with a divide-and-conquer approach. Your imple-
mentation should satisfy the following work and span recurrences where n is the length
of the input.

W (n) = 2W
(n
2

)
+O(1)

S(n) = S
(n
2

)
+O(1)

Also briefly justify that your implementation meets the cost bounds shown. You should
assume Seq = ArraySequence for cost bounds.

Our goal is to split the sequence roughly in half, recursively solve the smaller instances, then
combine their results. But what should the recursive calls return? Our first thought might be
to just return whether or not the smaller sequences are matched. However, this won’t work. A
sequence such as ((())) would be split into (((and))), neither of which are matched. We
can’t possibly determine that the concatenation of two unmatched sequences forms a matched
one without more information. We need to strengthen the problem.

Remark 1.6. “Strengthening the problem” is akin to strengthening the inductive hy-
pothesis in an inductive proof. We prove a stronger statement, then conclude the original
statement as a corollary.

Consider this: take a matched sequence, and find an instance of the immediate pair ().
Remove this pair. Is the sequence still matched? Yes it is! How about if the original sequence
was unmatched – is it still unmatched? Once again, yes!

Observation 1.7. If a sequence S contains the immediate pair (), then S is matched if and
only if it is still matched after removing the pair.

Now consider repeatedly removing all immediate pairs. Eventually, you will be left with a
sequence of the form)i(j – that is, a sequence of some number of right-parentheses followed
by some number of left-parentheses. If the original was matched, then you’ll have the empty
sequence, which can be written as)0(0.

To make use of this in our divide-and-conquer algorithm, we’ll have our recursive calls re-
turn a pair (i, j) indicating that the given sequence has the form)i(j after conceptually remov-
ing all immediate pairs. The rules for combining two of these are simple. Given two sequences
of the form)i(j and)k(`:

• If j ≤ k, then their concatenation has the form)i+k−j(`.

Built: August 29, 2016

1.5. ADDITIONAL EXERCISES 5

• If j > k, then their concatenation has the form)i(`+j−k.

In terms of implementation, we need to be able to split a sequence in half. We could do this
with take and drop, but it’s much cleaner to use splitMid. We also need Primitives.par
for parallelism – the code Primitives.par (fn () ⇒ e1, fn () ⇒ e2) indicates
the parallel pair (e1 ‖ e2).

Algorithm 1.8. Divide-and-conquer parenthesis matching.

1 fun parenMatch S =
2 let
3 fun parenMatch’ S =
4 case Seq.splitMid S of
5 Seq.EMPTY ⇒ (0, 0)
6 | Seq.ONE Paren.L ⇒ (0, 1)
7 | Seq.ONE Paren.R ⇒ (1, 0)
8 | Seq.PAIR (A,B) ⇒
9 let val ((i, j), (k, `)) =

10 Primitives.par (fn () ⇒ parenMatch’ A,
11 fn () ⇒ parenMatch’ B)
12 in if j ≤ k then (i+ k − j, `) else (i, `+ j − k)
13 end
14 in
15 parenMatch’ S = (0, 0)
16 end

Let’s now analyze cost bounds. On input of size n, we split the problem into two subproblems
of size n/2 and solve them in parallel, then perform a little bit of arithmetic. Assuming the
ArraySequence implementation, splitting requires O(1) work and span. We can clearly do
the arithmetic in O(1) work and span. Each of the subproblems has W (n/2) work and S(n/2)
span. Recall that we add the work of parallel subcomputations, while taking the max of their
spans, resulting in 2W (n/2) work and S(n/2) total span for computing the subproblems.

1.5 Additional Exercises

Exercise 1.9. As implied by the name, the ArraySequence implementation of se-
quences lays out its elements in an array. Describe how to implement splitMid (and
in general, subseq) in O(1) work and span.

Exercise 1.10. Carefully prove Observation 1.7.

Built: August 29, 2016

6 RECITATION 1. PARENTHESIS MATCHING

.

Built: August 29, 2016

	Parenthesis Matching
	Announcements
	Parentheses and Matched Sequences
	From Left to Right
	Divide and Conquer
	Additional Exercises

