
Recitation 7

Combining BSTs

7.1 Announcements

• FingerLab is due Friday afternoon. It’s worth 125 points.

• RangeLab will be released on Friday.

41

42 RECITATION 7. COMBINING BSTS

7.2 Generalized Combination

In lecture, we discussed union, and argued that it hasO
(
m log

(
n
m

+ 1
))

work andO(log(n) log(m))
span. The latter bound can be improved to O(log n + logm) using futures1, but that is outside
the scope of this course.

What about the functions intersection and difference? These can be implemented
in a similar fashion as union, and as such have the same cost bounds. In this recitation, we’ll
establish this more concretely.

Task 7.1. Implement all three functions union, intersection, and difference
in terms of a single helper function combine which has O

(
m log

(
n
m

+ 1
))

work and
O(log(n) log(m)) span for BSTs of size n and m, n ≥ m. Conclude that all three of
these functions have the same cost bounds.

Let’s begin by inspecting the code for union.

Algorithm 7.2. BST union.

1 fun union (T1, T2) =
2 case (T1, T2) of
3 (_,Leaf) ⇒ T1
4 | (Leaf,_) ⇒ T2
5 | (Node (L1,x,R1),_) ⇒
6 let val (L2,_,R2) = split (T2, x)
7 val (L,R) = (union (L1, L2) || union (R1, R2))
8 in joinMid (L, x,R)
9 end

What do we have to change to generalize this? Notice that, for example, intersection re-
turns Leaf in both base cases, while difference only returns Leaf in the second case.
Next, consider that intersection only keeps the key x if it is also present in T2, and
difference specifically removes x if it is present in T2. We can account for all of these
differences by introducing new arguments which specify what to do in the base cases, and
whether or not we should keep x in the recursive case (based on whether or not it is present in
T2).

1http://dl.acm.org/citation.cfm?id=258517

Built: October 10, 2016

http://dl.acm.org/citation.cfm?id=258517

7.2. GENERALIZED COMBINATION 43

Algorithm 7.3. Generalized BST combine.

1 fun combine f1 f2 k =
2 let
3 fun combine’ (T1, T2) =
4 case (T1, T2) of
5 (_,Leaf) ⇒ f1(T1)
6 | (Leaf,_) ⇒ f2(T2)
7 | (Node (L1,x,R1),_) ⇒
8 let val (L2,y,R2) = split (T2, x)
9 val (L,R) = (combine’ (L1, L2) || combine’ (R1, R2))

10 in if k(y) then joinMid (L, x,R) else join (L,R)
11 end
12 in
13 combine’
14 end
15
16 val union =
17 combine (fn T1 ⇒ T1) (fn T2 ⇒ T2) (fn y ⇒ true)
18
19 val intersection =
20 combine (fn T1 ⇒ Leaf) (fn T2 ⇒ Leaf) (fn y ⇒ isSome y)
21
22 val difference =
23 combine (fn T1 ⇒ T1) (fn T2 ⇒ Leaf) (fn y ⇒ not isSome y)

Task 7.4. Consider a function symdiff where (symdiff (A,B)) returns a BST
containing all keys which are either in A or B, but not both. Implement symdiff in
terms of combine.

val symdiff = combine (fn T1 ⇒ T1) (fn T2 ⇒ T2) (fn y ⇒ not isSome y)

Built: October 10, 2016

44 RECITATION 7. COMBINING BSTS

.

Built: October 10, 2016

