Recitation 7

Combining BSTs

7.1 Announcements

- *FingerLab* is due **Friday afternoon**. It's worth 125 points.
- *RangeLab* will be released on **Friday**.

7.2 Generalized Combination

In lecture, we discussed union, and argued that it has $O(m \log(\frac{n}{m}+1))$ work and $O(\log(n) \log(m))$ span. The latter bound can be improved to $O(\log n + \log m)$ using *futures*¹, but that is outside the scope of this course.

What about the functions intersection and difference? These can be implemented in a similar fashion as union, and as such have the same cost bounds. In this recitation, we'll establish this more concretely.

Task 7.1. Implement all three functions union, intersection, and difference in terms of a single helper function combine which has $O(m \log(\frac{n}{m} + 1))$ work and $O(\log(n) \log(m))$ span for BSTs of size n and m, $n \ge m$. Conclude that all three of these functions have the same cost bounds.

Task 7.2. Consider a function symdiff where (symdiff (A, B)) returns a BST containing all keys which are either in A or B, but not both. Implement symdiff in terms of combine.

http://dl.acm.org/citation.cfm?id=258517