
Recitation 6

Treaps

6.1 Announcements

• FingerLab has been released, and is due Thursday night. It’s worth 150 points.

• Midterm 1 is on Friday. You are allowed a single, double-sided, 8.5×11in sheet of paper
for notes. You must write in black or blue ink.

• RangeLab will be released next Thursday.

33

34 RECITATION 6. TREAPS

6.2 Deletion

Consider the following strategy for deleting a key k from a treap:

1. Locate the node containing k,

2. Set the priority of k to be −∞ (note that if k has children, then this breaks the heap
invariant of the treap),

3. Restore the heap invariant by rotating k downwards until it has only leaves for children,

4. Delete k by replacing its node with a leaf.

A “rotation” in this case refers to the process of making one of k’s children the root, depending
on their relative priorities. For example, if k has two children with priorities p1 and p2 where
p1 > p2, we rotate like so:

The case of p1 < p2 is symmetric. In turns out that this process is equivalent to calling join
on the children of k. You should convince yourself of this.

We’re interested in the following: in expectation, how many rotations must we perform
before we can delete k?

Built: October 5, 2015

6.2. DELETION 35

Let’s set up the specifics: we have a treap T formed from the sorted sequence of keys S,
|S| = n. We’re interested in deleting the key S[d]. Let T ′ be the same treap, except that the
priority of S[d] is now −∞.

We need a couple indicator random variables:

Ai
j =

{
1, if S[i] is an ancestor of S[j] in T

0, otherwise

(A′)ij =

{
1, if S[i] is an ancestor of S[j] in T ′

0, otherwise

Task 6.1. Write Rd, the number of rotations necessary to delete S[d], in terms of the
given random variables.

The number of rotations is equal to the number of nodes which aren’t an ancestor of S[d]
in T , but are in T ′. Therefore we have

Rd =
n−1∑
i=0

(A′)id −
n−1∑
i=0

Ai
d

Task 6.2. Give E [Ai
d] and E [(A′)id] in terms of i and d.

We have both Ai
d = 1 and (A′)id = 1 if S[i] has the largest priority among the |d − i| + 1

keys between S[i] and S[d]. However, notice that in the latter case, we already know that the
priority of S[i] is larger than that of S[d], unless i = d. So we only need that S[i] is the largest
among the |d− i| significant keys in this range. Therefore:

E
[
Ai

d

]
=

1

|d− i|+ 1

E
[
(A′)id

]
=

{
1, if i = d

1
|d−i| , otherwise

Built: October 5, 2015

36 RECITATION 6. TREAPS

Task 6.3. Compute E [Rd]. For simplicity, you may assume 1 ≤ d ≤ n− 2.

E [Rd] =
n−1∑
i=0

E
[
(A′)id

]
−

n−1∑
i=0

E
[
Ai

d

]
=

(
d−1∑
i=0

E
[
(A′)id

]
+ 1 +

n−1∑
i=d+1

E
[
(A′)id

])
−

(
d−1∑
i=0

E
[
Ai

d

]
+ 1 +

n−1∑
i=d+1

E
[
Ai

d

])

=

(
d−1∑
i=0

1

d− i
+

n−1∑
i=d+1

1

i− d

)
−

(
d−1∑
i=0

1

d− i+ 1
+

n−1∑
i=d+1

1

i− d+ 1

)
=
(
Hd +Hn−d−1

)
−
(
(Hd+1 − 1) + (Hn−d − 1)

)
= 2 +

(
Hd −Hd+1

)
+
(
Hn−d−1 −Hn−d

)
= 2− 1

d+ 1
− 1

n− d

≤ 2

Built: October 5, 2015

6.3. ADDITIONAL EXERCISES 37

6.3 Additional Exercises

Exercise 6.4. Implement find and insert without using auxiliary BST functions like
split and join.

Exercise 6.5. For treaps, suppose you are given implementations of find, insert,
and delete. Implement split and join in terms of these functions such that they
have the desired logarithmic cost bounds. You’ll need to “hack” the keys and priorities;
i.e., assume you can do funky things like insert a key with a specific priority, or construct
a temporary “dummy” key.

Built: October 5, 2015

38 RECITATION 6. TREAPS

.

Built: October 5, 2015

	Treaps
	Announcements
	Deletion
	Additional Exercises

