Recitation 10

Shortest Paths

10.1 Announcements

e ShortLab has been released, and is due Thursday night. It’s worth 125 points.

o SegmentLab will be released on Thursday.

53

54 RECITATION 10. SHORTEST PATHS

10.2 Dijkstra’s Algorithm

For this section, we’ll be using Dijkstra’s algorithm as implemented in the textbook.

Task 10.1. Run Dijkstra’s algorithm on the following, starting from GHC. Trace the
process by writing the most recently popped vertex and the contents of the priority queue
immediately before each deleteMin operation. Also write the returned mapping of
each vertex to its shortest path distance.

Built: November 3, 2015

10.2. DIJKSTRA’S ALGORITHM 55

Task 10.2. Consider the following simple modification to Dijkstra’s algorithm:

When relaxing the neighbors of a vertex, we only insert a neighbor into the
priority queue if it has not already been visited.

Does this modification improve the worst-case cost bounds of Dijkstra’s algorithm?

Task 10.3. Priority queues sometimes support a decreaseKey operation which at-
tempts to decrease the priority associated with some value. For example, in the priority
queue {(15, A), (42, B)}, we could apply decreaseKey on B with a new priority of
11 to get back the priority queue {(11, B), (15, A)}. If the newly specified priority is
greater than the original, then this operation simply does nothing.

Suppose that you are given a priority queue which supports insert and
decreaseKey in constant time, and deleteMin in O(log |Q|) time.” Describe how
to use this data structure to improve the asymptotic performance of Dijkstra’s algorithm.
You may assume the graph is enumerated.

“These bounds are supported by implementations such as Fibonacci and Brodal heaps.

Built: November 3, 2015

56 RECITATION 10. SHORTEST PATHS

10.3 A*

Dijkstra’s algorithm computes shortest paths between the source and every other vertex in the
graph. But what if we only care about the shortest path to a specific “target” vertex?

In the example graph given above, if you are trying to get from GHC to BH, you intuitively
know that the shortest path probably doesn’t pass through the UC. As you work your way to-
wards the goal, you are guided by an internal heuristic which helps you estimate how far each
building is from BH and choose the most promising option.

We can apply a similar approach to Dijkstra’s algorithm. At each step, we’d like to visit the
“most promising” candidate among the vertices in the frontier. To determine how promising a
candidate is, we need an estimate of how far that candidate is from the destination. Specifically,
we’ll assume we have a heuristic function i : V — R™ which maps vertices v to an estimate of
the length of the shortest path between v and the destination.

The A* algorithm is identical to Dijkstra’s except that it orders its priority queue by d(v) +
h(v) rather than by d(v), and terminates as soon as it finds the target. We also need to explicitly
store the distance to each vertex in the priority queue. Here is the code:

Algorithm 10.4. A* search with a consistent heuristic

1 A* h (G,s,t) =

2 let

3 search (X,Q) =

4 case PQO.deleteMin @ of

5 (NONE, _) = L

6 | (soME (_, (v, d), Q) =

7 if v=1t then d else

8 if v€ X then search (X,Q’) else

9 let

10 X = XU{ve d)

11 relax (Q,(u,w)) = PQ.insert (Q,(d+w+h(u), (u,d+w)))
12 Q" = iterate relax Q (NZ(v))
13 in

14 search (X', Q")

15 end

16 in

17 search ({}, PQ.singleton (h(s),(s,0)))
18 end

In order to ensure correctness, we need h to be consistent, meaning that for every two ver-
tices u and v, h(u) < §(u,v)+ h(v) where §(u, v) is the shortest path from u to v. Furthermore,
the heuristic value of the destination must be 0: h(¢) = 0. As an exercise, try proving that A*
always finds an optimal path when using a consistent heuristic.

Built: November 3, 2015

10.3. A* 57

It turns out that all consistent heuristics are also admissible, meaning that for every v, h(v) <
d(v,t). The opposite is not always true.

Task 10.5. Give an example of a consistent heuristic which causes A* to perform iden-
tically to Dijkstra’s algorithm up until the point it visits the target.

Task 10.6. Suppose we use h(v) = d(v,t). Argue that A* visits exactly the vertices on
the shortest path between s and t, and no others. (Assume a unique shortest path from
stot.)

Remark 10.7. In the worst case, A* has the same asymptotic behavior as Dijkstra’s
algorithm — a good example of a graph for which A* performs no better than Dijkstra
is a simple chain graph. However, for many kinds of graphs, A* is significantly faster
than Dijkstra due to the vastly reduced number of vertices visited.

Remark 10.8. A simple and effective heuristic used in many applications is Euclidean
distance. You should convince yourself that this heuristic is consistent.

Built: November 3, 2015

58 RECITATION 10. SHORTEST PATHS

10.4 Additional Exercises

Exercise 10.9. Design a consistent heuristic for the example graph given at the begin-
ning of this recitation and run A* with that heuristic. Take note of how many vertices
are left unvisited.

Exercise 10.10. Prove that for any consistent heuristic h, A* returns the shortest path
between the source and target.

Exercise 10.11. Give an example of a small graph along with an admissible heuristic
which is inconsistent.

Exercise 10.12. Prove that any consistent heuristic is also admissible.

Exercise 10.13. A simple modification of A* is called weighted-A*. In this algorithm,
we take an additional parameter w > 1.0 and order the priority queue by d(v)+w-h(v).
This has the tendency to make A* more directed towards the goal, further reducing the
number of vertices visited at the cost of producing a potentially non-optimal solution.

Prove that weighted-A* with weight w finds a path to the destination of length within a
factor of w of the optimal path.

Exercise 10.14. Implement Bellman-Ford in SML.

Built: November 3, 2015

	Shortest Paths
	Announcements
	Dijkstra's Algorithm
	A*
	Additional Exercises

