
Recitation 8

Graphs and BFS

8.1 Announcements

• RangeLab has been released, and is due Thursday night. It’s worth 125 points.

• BridgeLab will be released on Thursday.

43

44 RECITATION 8. GRAPHS AND BFS

8.2 Graph Representations

Task 8.1. Write the representation of the following graph

1. as an edge set

(use the pair (x, y) to indicate a directed edge from x to y),

2. as an adjacency table, and

3. as an adjacency sequence.

0

2

4

1

3

5

Edge Set:{
(0, 1), (0, 2), (1, 2), (1, 5), (2, 0), (2, 3)

(2, 4), (2, 5), (3, 1), (3, 4), (5, 3)
}

Adjacency Table:{
0 7→ {1, 2}, 1 7→ {2, 5}, 2 7→ {0, 3, 4, 5},
3 7→ {1, 4}, 4 7→ {}, 5 7→ {3}

}
Adjacency Sequence:〈
〈1, 2〉, 〈2, 5〉, 〈0, 3, 4, 5〉, 〈1, 4〉, 〈〉, 〈3〉

〉

Task 8.2. Implement the function

val adjTable : (vertex * vertex) Table.Seq.t
→ Table.Set.t Table.t

where (adjTable S) converts the “edge set” S into an adjacency table.a Analyze the
work and span of your implementation, assuming tables/sets implemented as treaps.

Assume Table ascribes to TABLE where type Key.t = vertex.

aIn this context, we represent an “edge set” simply as an unordered sequence of directed edges.

Built: October 20, 2015

8.3. BFS 45

Algorithm 8.3. Constructing an adjacency table.

1 fun adjTable S =
2 Table.map Table.Set.fromSeq (Table.collect S)

The Table.collect incurs a cost of O(|S| log |S|) work and O(log2 |S|) span. The Table.map
Table.Set.fromSeq incurs a work cost of O(

∑
i |Si| log |Si|) where Si is the sequence of

neighbors of the ith vertex, therefore |Si| ≤ |S| and |S| =
∑

i |Si|. That gives us O(
∑

i |Si| log |Si|) =
O(|S| log |S|) work. The span is clearly O(log2 |S|).

Hence the work and span of (adjTable S) are O(|S| log |S|) and O(log2 |S|), respec-
tively.

8.3 BFS

8.3.1 An Example

Task 8.4. Run BFS on the example graph from the previous section, starting at vertex
1. Draw the resulting BFS tree. Draw tree edges as solid lines and non-tree edges as
dashed lines.

0

2

4

1

3

5
Note that we could have chosen (5, 3) as a
tree edge instead of (2, 3). Either edge is
valid; as long as we don’t choose both as
tree edges, we’re golden!

Built: October 20, 2015

46 RECITATION 8. GRAPHS AND BFS

8.3.2 Implementation

Consider the following code, which computes the BFS tree of an enumerated graph represented
by an adjacency sequence. For brevity, we’ll write NONE as and (SOME x) as x .

Algorithm 8.5. Computing BFS trees on adjacency sequences.

1 fun BFS (G,s) =
2 let
3 fun BFS’ (Xi,Fi) =
4 if |Fi| = 0 then STSeq.toSeq Xi else
5 let
6 val Ni =
7 Seq.flatten

〈〈
(u, v) : u ∈ G[v] | Xi[u] =

〉
: v ∈ Fi

〉
8 val Xi+1 = STSeq.inject (Xi,Ni)
9 val Fi+1 =

〈
u : (u, v) ∈ Ni | Xi+1[u] = v

〉
10 in
11 BFS’ (Xi+1,Fi+1)
12 end
13
14 val init = STSeq.fromSeq

〈
: 0 ≤ i < |G|

〉
15 val X0 = STSeq.update (init, (s, s))
16 val F0 = 〈s〉
17 in
18 BFS’ (X0,F0)
19 end

Task 8.6. Execute this code on the example graph given in the first section, starting with
vertex 1 as the source. Trace the process by writing down the values Xi, Fi, and Ni for
i = 0, 1, 2, 3.

i Xi Fi Ni

0
〈

, 1 , , , ,
〉 〈

1
〉 〈

(2, 1), (5, 1)
〉

1
〈

, 1 , 1 , , , 1
〉 〈

2, 5
〉 〈

(0, 2), (4, 2), (3, 2), (3, 5)
〉

2
〈

2 , 1 , 1 , 5 , 2 , 1
〉 〈

0, 4, 3
〉 〈〉

3
〈

2 , 1 , 1 , 5 , 2 , 1
〉 〈〉

(nonexistent)

Built: October 20, 2015

8.3. BFS 47

Task 8.7. Analyze the work and span of this implementation in terms of n (the number
of vertices), m (the number of edges), and d (the diameter of the graph).

Let’s break down the code, line-by-line. We write ||F || =
∑

v∈F (1 + d+G(v)).

• Line 7: O(||Fi||) work, O(log n) span.

• Line 8: O(||Fi||) work, O(1) span.

• Line 9: O(||Fi||) work, O(log n) span.

• Line 14: O(n) work, O(1) span.

• Lines 15,16: O(1) work, O(1) span.

There are two important observations to make here:

1. no vertex is ever in a frontier more than once, and

2. the number of rounds of BFS is upper bounded by d+ 1. (There could be a vertex d hops
away from the source, and each round progresses by exactly one hop. The “+1” comes
from the final round which verifies that the frontier is empty, then exits).

We can now show that
d∑

i=0

||Fi|| ≤
∑
v

(1 + d+G(v)) = n + m.

Therefore the total work is

O

(
n +

d−1∑
i=0

||Fi||

)
= O(n + m)

and the span is O(d log n).

Built: October 20, 2015

48 RECITATION 8. GRAPHS AND BFS

8.4 Bonus: Single-Threaded Sequences

A single-threaded sequence is basically an ephemeral sequence wrapped up in a (seemingly)
purely functional interface. By “ephemeral”, we mean the opposite of “persistent”: ephemeral
data structures allow destructive modifications to their contents. For example, imagine an array.
When we call STSeq.update or STSeq.inject, we are destructively modifying this ar-
ray. This is why STSeq.update and STSeq.inject are so fast: there is no need to copy
an entire sequence.

Now, consider the following code.

1 val S = 〈i : 0 ≤ i < n〉
2 val S0 = STSeq.fromSeq S
3 val S1 = STSeq.update (S0, (0, 42))
4 val S2 = STSeq.update (S1, (1, 43))
5 val S3 = STSeq.update (S1, (2, 44))

On lines 3 and 4, we destructively modify S0 to create S1, then destructively modify S1 in order
to create S2. So, what happens on line 5, when we attempt to perform another update on S1,
which is currently an “old” version?

In this scenario, in order to appear persistent, S1 has to rebuild itself. That is, it has to
replay every update which happened since the “origin,” which in this case is line 2. Note that
this could be arbitrarily expensive!

From the perspective of ensuring certain cost bounds, the “correct” usage of a single-
threaded sequence is identical to how one would use an array: that is, you can only operate
on the most recent version.

We call these sequences “single-threaded” since they should only be modified by a single
thread at a time. For example, the following code has a nasty race condition!

1 val S = STSeq.fromSeq 〈i : 0 ≤ i < n〉
2 val (A,B) = (STSeq.update (S, (0, 42)) || STSeq.update (S, (0, 43)))

In summary,

• Single-threaded sequences are essentially arrays which have been made persistent.

• It is cheap to modify the most recent version of an st-sequence. (Updates are constant-
time, injections are linear in the number of updates.)

• It is expensive to modify old versions of an st-sequence. In general, using an old version
which is i steps away from its origin will require an additional Ω(i) work and span. For
the sake of cost analysis, you should never modify an old version.

• A single-threaded sequence should never be modified by two parallel threads.

Built: October 20, 2015

	Graphs and BFS
	Announcements
	Graph Representations
	BFS
	An Example
	Implementation

	Bonus: Single-Threaded Sequences

