
Recitation 7

Augmented and Ordered Tables

7.1 Announcements

• RangeLab will be released on Thursday.

39

40 RECITATION 7. AUGMENTED AND ORDERED TABLES

7.2 Stock Market

Suppose you’re working as a stock market analyst. You want to be able to quickly determine the
largest increase in stock value during a specific time interval. For example, if the stock values
of some company from time 0 to time 6 are 〈0, 2, 3, 1, 5, 10, 6〉, then the maximum increase in
the time interval [2, 4] is 5 − 1 = 4, while the maximum increase within the interval [0, 6] is
10− 0 = 10.

Task 7.1. Implement the function

val maxIncrease : int Seq.t → (int * int) → int

where (maxIncrease S (t1, t2)) returns the maximum increase of the stock values
S within the time interval [t1, t2]. Assume that 0 ≤ t1 < t2 < |S|.

Your implementation must be staged such that it requires linear work upon application of
the first argument, and logarithmic work upon application of the second. For example,
in the following, line 1 should require O(|S|) work while lines 2 and 3 should each
require O(log |S|) work.

1 val queryInterval = maxIncrease S
2 val _ = queryInterval (t1, t2)
3 val _ = queryInterval (t3, t4)

Built: October 12, 2015

7.2. STOCK MARKET 41

First, suppose that we ignore the staging requirements. Instead, let’s just try to implement
(maxIncrease S (t1, t2)) in O(|S|) work. We can do so with a strengthened divide-and-
conquer.

Imagine a Seq.reduce over S[t1, · · · , t2] whose combining function returns (a) the mini-
mum stock value, (b) the maximum stock value, and (c) the maximum increase. The combining
function then just needs to separately consider the cases where the maximum increase comes
from the left subresult, the right subresult, or “straddles the middle.” The code is as follows.

Algorithm 7.2. Implementing maxIncrease by avoiding the preprocessing step.

1 fun maxOf3 (x, y, z) = Int.max (x, Int.max (y, z))
2
3 fun combine ((min1, max1, inc1), (min2, max2, inc2)) =
4 (Int.min (min1, min2),
5 Int.max (max1, max2),
6 maxOf3 (inc1, max2 - min1, inc2))
7
8 fun maxIncrease S (t1, t2) =
9 let val S′ = Seq.map (fn v ⇒ (v, v, 0)) S[t1, · · · , t2]

10 val (_, _, x) = Seq.reduce combine (∞, −∞, −∞) S′

11 in x
12 end

Now all that is left is to “dynamize” the reduce with augmented binary search trees. Specif-
ically, the keys of our BST will be indices (time-steps) of the input, the values will be the
singletons (v, v, 0) for each v ∈ S, and the reduced values will be the triples containing (a) the
min value, (b) the max value, and (c) the maximum increase.

Note that we can build such a tree in linear time because the input is presorted by key. (The
keys are just indices!) We can query the tree by requesting the reduced value of the chunk of
the tree which lies between t1 and t2.

In the 15-210 library, all of this can be accomplished with the MkTreapAugTable functor,
which takes structures Key and Val as input (fixing the key and value types of the table) and
produces an implementation of tables as augmented treaps. The resulting structure ascribes to
AUG ORDTABLE, which has ordered table functions such as split, join, and getRange,
as well as reduceVal which extracts reduced values.

Note that the key type of our table is int. The 15-210 library contains a structure IntElt
which defines the functions necessary to use integers as keys, such as comparison, hashing, etc.
We’ll have to build the Val structure ourselves. It must ascribe to MONOID.1

1The term “monoid” comes from the field of abstract algebra. Monoids are just sets along with a binary
associative operation and an identity element. For example, (Z,+, 0) is a monoid, since + is associative, and the
integer 0 is the additive identity.

Built: October 12, 2015

42 RECITATION 7. AUGMENTED AND ORDERED TABLES

Algorithm 7.3. Implementing maxIncrease with separate preprocessing and query
steps. Pay close attention to lines 21 through 34 to see how to correctly stage a function
in SML.

1 fun maxOf3 (x, y, z) = Int.max (x, Int.max (y, z))
2
3 structure MyVal =
4 struct
5 type t = int * int * int
6
7 fun f ((min1, max1, inc1), (min2, max2, inc2)) =
8 (Int.min (min1, min2),
9 Int.max (max1, max2),

10 maxOf3 (inc1, max2 - min1, inc2))
11
12 val I = (∞, −∞, −∞)
13
14 val toString = Int.toString
15 end
16
17 structure AugTable =
18 MkTreapAugTable (structure Key = IntElt
19 structure Val = MyVal)
20
21 fun maxIncrease S =
22 let
23 fun singleton (i, v) = AugTable.singleton (i, (v, v, 0))
24 val S′ = Seq.mapIdx singleton S
25 val T = Seq.reduce AugTable.join (AugTable.empty ()) S′

26
27 fun query (t1, t2) =
28 let val T ′ = AugTable.getRange T (t1, t2)
29 val (_, _, x) = AugTable.reduceVal T ′

30 in x
31 end
32 in
33 query
34 end

As for cost bounds, notice that line 24 is clearly linear. Line 25 is more subtle; if you write
a recurrence, you’ll see that it has the form W (n) = 2W (n/2) + O(log n). We’ve solved this
recurrence before – it’s linear!

Finally, line 28 requires logarithmic work. getRange is implemented as two splits: one
for the lower key, and one for the higher key. To make it inclusive, we have to follow up each
split with an insertion.

Built: October 12, 2015

	Augmented and Ordered Tables
	Announcements
	Stock Market

