
Full Name:

Andrew ID: Section:

15–210: Parallel and Sequential Data Structures and Algorithms

Practice Final (Solutions)

December 2015

• Verify: There are 22 pages in this examination, comprising 9 questions worth a total of 163
points. The last 2 pages are an appendix with costs of sequence, set and table operations.

• Time: You have 180 minutes to complete this examination.

• Goes without saying: Please answer all questions in the space provided with the question.
Clearly indicate your answers.

• Beware: You may refer to your three double-sided 81
2 × 11in sheet of paper with notes, but

to no other person or source, during the examination.

• Primitives: In your algorithms you can use any of the primitives that we have covered in
the lecture. A reasonably comprehensive list is provided at the end.

• Code: When writing your algorithms, you can use ML syntax but you don’t have to. You
can use the pseudocode notation used in the notes or in class. For example you can use the
syntax that you have learned in class. In fact, in the questions, we use the pseudo rather
than the ML notation.

Sections

A 9:30am - 10:20am Favonia/Oliver
B 10:30am - 11:20am Anna/Yongshan
C 12:30pm - 1:20pm Chris/Roger
D 1:30pm - 2:20pm Edward/Sonya
E 3:30pm - 4:20pm Patrick/Jichao
F 4:30pm - 5:20pm Yutong/Zeke

15–210 Practice Final 1 of 22 December 2015

Full Name: Andrew ID:

Question Points Score

Binary Answers 26

Costs 12

Short Answers 26

Slightly Longer Answers 20

Multisource Shortest Paths 10

Median ADT 12

Geometric Coverage 12

Boruvka via Tree Contraction 25

Swap with Compare-and-Swap 20

Total: 163

15–210 Practice Final 2 of 22 December 2015

Question 1: Binary Answers (26 points)
Clearly mark T or F to the left of each question.

ANS: (a) F, (b) T, (c) F, (d) T, (e) F, (f) T, (g) F, (h) T, (i) T, (j) F, (k) T (l) F
(m) T

(a) (2 points) The expressions (Seq.reduce f I A) and (Seq.iterate f I A) always return
the same result as long as f is commutative.

(b) (2 points) The expressions (Seq.reduce f I A) and (Seq.reduce f I (Seq.reverse A))
always return the same result if f is associative and commutative.

(c) (2 points) If a randomized algorithm has expected O(n) work, then there exists some
constant c such that the work performed is guaranteed to be at most cn.

(d) (2 points) Solving recurrences with induction can be used to show both upper and lower
bounds?

(e) (2 points) Let p be an odd prime. In open address hashing with a table of size p and given
a hash function h(k), quadratic probing uses h(k, i) = (h(k) + i2) mod p as the ith probe
position for key k. If there is an empty spot in the table quadratic hashing will always
find it.

(f) (2 points) Bottom-Up Dynamic Programming can be parallel, whereas the Top-Down
version as described in class (ie, purely functional) is always sequential.

(g) (2 points) The height of any treap is O(log n).

(h) (2 points) It is possible to write insert for treaps that uses the split operation but not the
join operation.

(i) (2 points) Dijkstra’s algorithm always terminates even if the input graph contains negative
edge weights.

(j) (2 points) A Θ(n2)-work algorithm always takes longer to run than a Θ(n log n)-work
algorithm.

(k) (2 points) We can improve the work efficiency of a parallel algorithm by using granularity
control.

15–210 Practice Final 3 of 22 December 2015

(l) (2 points) We can measure the work efficiency of a parallel algorithm by measuring the
running time (work) of the algorithm on a single core, divided by the running time (work)
of the sequential elision of the algorithm.

(m) (2 points) Some atomic read-modify-write operations such as compare-and-swap suffer
from the ABA problem.

15–210 Practice Final 4 of 22 December 2015

Question 2: Costs (12 points)

(a) (6 points) Give tight assymptotic bounds (Θ) for the following recurrence using the tree
method. Show your work.

W (n) = 2W (n/2) + n log n

Solution: At ith level there are 2i subproblems each of which cost is n
2i

log n
2i

for total
cost of n(log n− i).

W (n) =

logn−1∑
i=0

n(log n− i)

= n

logn∑
j=1

j

= n log n(log n+ 1)/2

W (n) ∈ Θ(n log2 n)

(b) (6 points) Check the appropriate column for each row in the following table:

root dominated leaf dominated balanced

W (n) = 2W (n/2) + n1.5

W (n) =
√
nW (

√
n) +

√
n

W (n) = 8W (n/2) + n2

Solution:

root dominated leaf dominated balanced

W (n) = 2W (n/2) + n1.5 X

W (n) =
√
nW (

√
n) +

√
n X

W (n) = 8W (n/2) + n2 X

15–210 Practice Final 5 of 22 December 2015

Question 3: Short Answers (26 points)
Answer each of the following questions in the spaces provided.

(a) (3 points) What simple formula defines the parallelism of an algorithm (in terms of work
and span)?

Solution: P (n) = W (n)
S(n)

(b) (3 points) Name two algorithms we covered in this course that use the greedy method.

Solution: Dijkstra’s, Prim’s, Kruskal’s ...

(c) (3 points) Given a sequence of key-value pairs A, what does the following code do?

Table.map Seq.length (Table.collect A)

Solution: Makes a histogram of A mapping each key to how many times it appears
(the values are ignored).

(d) (5 points) Consider an undirected graph G with unique positive weights. Suppose it has a
minimum spanning tree T . If we square all the edge weights and compute the MST again,
do we still get the same tree structure? Explain briefly.

Solution: Yes we get the same tree. The minimum spanning tree only depends on
the ordering among the edges. This is because the only thing we do with edges is
compare them.

(e) (3 points) What asymptotically efficient parallel algorithm/technique can one use to count
the number of trees in a forest (tree and forest have their graph-theoretical meaning)?
(Hint: the ancient saying of “can’t see forest from the trees” may or may not be of help.)
Give the work and span for your proposed algorithm.

Solution: Run tree contraction over the entire forrest to contract each tree into a
single vertex. (You can use either star contract or rake and compress.) Count the
number of vertices at the end.

W (n) = O(n) S(n) = O(log2 n)

expected case.

(f) (3 points) What are the two ordering invariants of a Treap? (Describe them briefly.)

Solution: Heap property: Each node has a higher priority than all of its descen-
dants.
BST property: Each node’s key is greater than the keys in its left subtree and less
than the keys in its right subtree.

15–210 Practice Final 6 of 22 December 2015

(g) (6 points) Is it the case that in a leftist heap the left subtree of a node is always larger
than the right subtree. If so, argue why (briefly). If not, give an example.

Solution: False, as shown by the following example of a shape of a leftist heap:

o

/ \

o o

/

o

15–210 Practice Final 7 of 22 December 2015

Question 4: Slightly Longer Answers (20 points)

(a) (6 points) Certain locations on a straight pathway recently built for robotics research have
to be covered with a special surface, so CMU hires a contractor who can build arbitrary
length segments to cover these locations (a location is covered if there is a segment covering
it). The segment between a and b (inclusive) costs (b− a)2 + k, where k is a non-negative
constant. Let k ≥ 0 and X = 〈x0, . . . , xn−1〉, xi ∈ R+, be a sequence of locations that have
to be covered. Give an O(n2)-work dynamic programming solution to find the cheapest
cost of covering these points (all given locations must be covered). Be sure to specify a
recursive solution, identify sharing, and describe the work and span in terms of the DAG.

Solution:

function CCC(X) =
let

% The cheapest cover cost for X[0, . . . , i]
function f(i) =

if (i < 0) then 0

else min
0≤j≤i

(
f(j − 1) + k + (xi − xj)2

)
in f(|X| − 1) end

Sharing:
There are at most |X| = n distinct subcalls to f since i ranges from 0 to n− 1.

DAG and costs:
Each node in the DAG does work O(n) and has span O(log n). The DAG has depth
and size O(n). Therefore the total work is O(n2) and the total span is O(n log n).

(b) (7 points) Here is a slightly modified version of the algorithm given in class for finding
the optimal binary search tree (OBST):

function OBST (A) =
let

function OBST’ (S, d) =
if |S| = 0 then 0
else mini∈〈 1,...,|S| 〉>(OBST’(S1,i−1, d+ 1) + d× p(Si) + OBST’(Si+1,|S|, d+ 1))

in
OBST’(A, 1)

end

Recall that Si,j is the subsequence 〈Si, Si+1, . . . , Sj〉 of S. For |A| = n, place an asymptotic
upper bound on the number of distinct arguments OBST′ will have (a tighter bound will
get more credit).

Solution: There are
(
n+1
2

)
= n(n+ 1)/2 possible subsequences of S and d is between

1 and n, so the number of distinct arguments is upper-bounded by O(n3).

(c) (7 points) Given n line segments in 2 dimensions, the 3-intersection problem is to deter-
mine if any three of them intersect at the same point. Explain how to do this in O(n2)

15–210 Practice Final 8 of 22 December 2015

work and O(log n) span. You can assume the lines are given with integer endpoints (i.e.
you can do exact arithmetic and not worry about roundoff errors).

Solution: First, we compute all possible intersection points between pairs of line
segments. There can be at most O(n2) points. Then, insert these points into a hash
table, checking if any collision seen is a result of 3 lines intersecting at the same
point. This meets the time bound since hashing O(n2) points takes O(n2) work and
O(log2 n2) ⊆ O(log2 n) span.

15–210 Practice Final 9 of 22 December 2015

Question 5: Multisource Shortest Paths (10 points)
You are starting a company that supplies maps indicating the proximity of every intersection
in Pittsburgh to the nearest coffee shop. This would be useful if you’re buying coffee in a hurry.
You should assume that all road segments are the same length, but some are one-way streets.
This problem can be defined as follows:

Definition (The multisource unweighted shortest pathlength (MUSP) problem):
Given a directed graph G = (V,E) and a set of sources U ⊆ V determine for every
vertex in v ∈ V its shortest path length from any vertex in U , denoted as δ(U, v).

Please answer the following:

(a) (5 points) Describe an algorithm that solves this problem inO(m lg n) work andO(d log2 n)
span, where n = |V |, m = |E|, and d = maxv∈V δ(U, v). A couple sentences should
suffice—you may justify the cost by relating it to the cost of some algorithm we covered
in class.

Solution: Use breadth first search with U as the initial frontier. The bounds are the
same as given in lecture for BFS.

(b) (5 points) Suppose now you would like to indicate the shortest path length from every
intersection to the nearest coffee shop. That is to say, you want for every vertex in V its
shortest path length to any vertex in U . How would you modify your algorithm above
so that it has the same cost bounds, except that d = maxv∈V δ(v, U)? Give a short
justification.

Solution: Reverse the edges in G and do the same as above. Reversing can be done
with a flatten and collect, which are within the cost bounds given above.

15–210 Practice Final 10 of 22 December 2015

Question 6: Median ADT (12 points)
The median of a set C, denoted by median(C), is the value of the dn/2e-th smallest element
(counting from 1). For example,

median({1, 3, 5, 7}) = 3
median({4, 2, 9}) = 4

In this problem, you will implement an abstract data type medianT that maintains a collection
of integers (possibly with duplicates) and supports the following operations:

insert(C, v) : medianT× int→ medianT add the integer v to C.
median(C) : medianT→ int return the median value of C.
fromSeq(S) : int Seq.t→ medianT create a medianT from S.

Throughout this problem, let n denote the size of the collection at the time, i.e., n = |C|.
(a) (5 points) Describe how you would implement the medianT ADT using (balanced) binary

search trees so that insert and median take O(log n) work and span.

Solution: As described in the augmented tree lecture, we keep a balanced BST where
each node is augmented with the size of the subtree, so that the (n/2)-th element can
be found in O(log n); inserting an element also takes O(log n) because we simply need
to “update” the size information on a revelant path, which has length O(log n).

(b) (7 points) Using some other data structure, describe how to improve the work to O(log n),
O(1) and O(|S|) for the three operations respectively. The fromSeq S function needs to
run in O(log2 |S|) expected span and the work can be expected case. (Hint: think about
maintaining the median, the elements less than the median, and the elements greater than
the median separately.)

Solution: Keep a max heap of values smaller than the median, the current median, and
a min heap of values bigger than the median. When inserting, put the new value in the
correct heap, rebalancing as necessary. The function fromSeq can be easily supported since
using quick select to the initial median only requires O(n) expected work and O(log2 n)
span. The build heaps can be done in the same work and span using a meldable heap such
as leftist heaps.

15–210 Practice Final 11 of 22 December 2015

Question 7: Geometric Coverage (12 points)
For points p1, p2 ∈ R2, we say that p1 = (x1, y1) covers p2 = (x2, y2) if x1 ≥ x2 and y1 ≥ y2.
Given a set S ⊆ R2, the geometric cover number of a point q ∈ R2 is the number of points in
S that q covers. Notice that by definition, every point covers itself, so its cover number must
be at least 1.

In this problem, we’ll compute the geometric cover number for every point in a given sequence.
More precisely:

Input: a sequence S = 〈s1, . . . , sn〉, where each si ∈ R2 is a 2-d point.

Output: a sequence of pairs each consististing of a point and its cover number. Each
point must appear exactly once, but the points can be in any order.

Assume that we use the ArraySequence implementation for sequences.

(a) (4 points) Develop a brute-force solution gcnBasic (in pseudocode or Standard ML). De-
spite being a brute-force solution, your solution should not do more work than O(n2).

Solution:

fun GCN S =
let fun covers((x1, y1), (x2, y2)) = (x1 ≥ x2) ∧ (y1 ≥ y2)
in
〈 (p, | 〈 p′ ∈ P | covers(p, p′) 〉 |) : p ∈ P 〉

end

(b) (4 points) In words, outline an algorithm gcnImproved that has O(n log n) work. You
may assume an implementation of OrderedTable in which split, join, and insert have
O(log n) cost (i.e., work and span), and size and empty have O(1) cost.

Solution: We’ll keep an ordered table T of points ordered by their x values. Initially,
T is empty. To compute the cover number for every point, we’ll first sort these points
by their y values. Then, for each of these points, we insert them one by one into
T—and the cover number of this point can be found by splitting T using its x value
and taking the size of the left side. This assumes we can calculate size in O(log n)
work, which is easy with an augmented tree implementation of ordered tables.

15–210 Practice Final 12 of 22 December 2015

(c) (4 points) Show that the work bound cannot be further improved by giving a lower bound
for the problem.

Solution: We’ll reduce comparison-based sorting to GCN, which means that GCN
cannot be solved in less than Ω(n log n) work. The reduction is as follows: for a given
input sequence s = 〈s1, . . . , sn〉, we create a sequence of points

P = 〈(s1, s1), (s2, s2), . . . , (sn, sn)〉

(using map in O(n) work and O(1) span). Running GCN on this P gives the “rank”
of each element, which we can then use as indicies to inject and get a sorted sequence.

15–210 Practice Final 13 of 22 December 2015

Question 8: Boruvka via Tree Contraction (25 points)
In SegmentLab, you implemented Bor̊uvka’s algorithm that interleaved star contractions and
finding minimum weight edges. In this question you will analyze Bor̊uvka’s algorithm more
carefully.

We’ll assume throughout this problem that the edges are undirected, and each edge is labeled
with a unique identifier (`). The weights of the edges do not need to be unique, and m = |E|
and n = |V |.

% returns the set of edges in the minimum spanning tree of G
function MST(G = (V,E)) =

if |E| = 0 then {}
else let

val F = {min weight edge incident on v : v ∈ V }
val (V ′, P) = contract each tree in the forest (V, F) to a single vertex

V ′ = remaining vertices
P = mapping from each v ∈ V to its representative in V ′

val E′ = {(Pu, Pv, `) : (u, v, `) ∈ E | Pu 6= Pv}
in
MST(G′ = (V ′, E′)) ∪ {` : (u, v, `) ∈ F}

end

(a) (4 points) Show an example graph with 4 vertices in which F will not include all the edges
of the MST.

Solution:

3

o --- o

1 | | 2

o o

(b) (4 points) Prove that the set of edges F must be a forest (i.e. F has no cycle).

Solution: Answer 1: The MST does not have a cycle (it is a tree) and F is a subset
of F so it can’t have a cycle.

Answer 2: AFSOC that there is a cycle. Consider the maximum weight edge on
the cycle. Neither of its endpoints will choose it since they both have lighter edges.
Contradiction.

15–210 Practice Final 14 of 22 December 2015

(c) (4 points) Suggest a technique to efficiently contract the forest in parallel. What is a tight
asymptotic bound for the work and span of your contract, in terms of n? Explain briefly.
Are these bounds worst case or expected case?

Solution: Use star contraction as described in class. Since in contraction a tree will
always stay a tree, the number of edges must go down with the number of vertices.
Therefore total work will be O(n) and span will be O(log2 n) in expectation.

(d) (4 points) Argue that each recursive call to MST removes, in the worst case, at least half

of the vertices; that is, |V ′| ≤ |V |2 .

Solution: Every vertex will join at least one other vertex. Since edges have two
directions, at least n/2 of them must be selected, which will remove at least n/2
vertices (n = |V |).

(e) (4 points) What is the maximum number of edges that could remain after one step (i.e.
what is |E′|)? Explain briefly.

Solution: m − n/2 since at least n/2 edges are removed, as described in previous
answer.

(f) (5 points) What is the expected work and span of the overall algorithm in terms of m and
n? Explain briefly. You can assume that calculating F takes O(m) work and O(log n)
span.

Solution: Since vertices go down by at least a factor of 1/2 on each round, there will
be at most log n rounds. The cost of each round is dominated by calculating F , O(m)
work and O(log n) span and the contraction of forests O(n) work and O(log2 n) span.
Multiplying the max of each of these by log n gives O(m log n) work and O(log3 n)
span.

15–210 Practice Final 15 of 22 December 2015

Question 9: Swap with Compare-and-Swap (20 points)

(a) (10 points) Write a function swap that takes two memory locations la and lb and atomi-
cally swaps their values using compare-and-swap. Recall that compare-and-swap takes a
memory location `, an old value v, and a new value w and atomically replaces the contents
of ` with w if the contents of ` is equal to v.

long lock = 0;

function swap-with-cas (la: long, lb: long) =

let

function take_lock () =

while (true) do

if compare-and-swap (lock, 0, 1) then

break;

function release_lock () =

while (true) do

if compare-and-swap (lock, 1, 0) then

break;

in

take_lock ();

long x <- load lx

long y <- load ly

store y into lx

store x into ly

release_lock ();

end

15–210 Practice Final 16 of 22 December 2015

(b) (10 points) Does your algorithm suffer from the ABA problem? If so, explain how it does,
and whether the problem affects the correctness of your algorithm. If so, then can you
describe briefly a way to fix the problem (no pseudo-code needed)?

Solution: Yes it does, because the contents of lock can change between the load
and the compare-and-swap to 1 and then back to 0. This however does not effect
correctness because the atomicity is still guaranteed, because when the lock is 0,
there is no other thread is the criticas section.

But if we still want to fix the ABA problem, then we can do so by making sure that
each update to the location lock increments some version number. We would then
insist on having the same version number during compare and swap. This would
reduce the chances of the ABA problem but would not absolutely prevent it.

15–210 Practice Final 17 of 22 December 2015

Appendix: Library Functions

signature SEQUENCE =

sig

type ’a t

type ’a seq = ’a t

type ’a ord = ’a * ’a -> order

datatype ’a listview = NIL | CONS of ’a * ’a seq

datatype ’a treeview = EMPTY | ONE of ’a | PAIR of ’a seq * ’a seq

exception Range

exception Size

val nth : ’a seq -> int -> ’a

val length : ’a seq -> int

val toList : ’a seq -> ’a list

val toString : (’a -> string) -> ’a seq -> string

val equal : (’a * ’a -> bool) -> ’a seq * ’a seq -> bool

val empty : unit -> ’a seq

val singleton : ’a -> ’a seq

val tabulate : (int -> ’a) -> int -> ’a seq

val fromList : ’a list -> ’a seq

val rev : ’a seq -> ’a seq

val append : ’a seq * ’a seq -> ’a seq

val flatten : ’a seq seq -> ’a seq

val filter : (’a -> bool) -> ’a seq -> ’a seq

val map : (’a -> ’b) -> ’a seq -> ’b seq

val zip : ’a seq * ’b seq -> (’a * ’b) seq

val zipWith : (’a * ’b -> ’c) -> ’a seq * ’b seq -> ’c seq

val enum : ’a seq -> (int * ’a) seq

val filterIdx : (int * ’a -> bool) -> ’a seq -> ’a seq

val mapIdx : (int * ’a -> ’b) -> ’a seq -> ’b seq

val update : ’a seq * (int * ’a) -> ’a seq

val inject : ’a seq * (int * ’a) seq -> ’a seq

val subseq : ’a seq -> int * int -> ’a seq

val take : ’a seq -> int -> ’a seq

val drop : ’a seq -> int -> ’a seq

val splitHead : ’a seq -> ’a listview

val splitMid : ’a seq -> ’a treeview

val iterate : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq * ’b

val iteratePrefixesIncl : (’b * ’a -> ’b) -> ’b -> ’a seq -> ’b seq

val reduce : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a

val scan : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq * ’a

val scanIncl : (’a * ’a -> ’a) -> ’a -> ’a seq -> ’a seq

val sort : ’a ord -> ’a seq -> ’a seq

val merge : ’a ord -> ’a seq * ’a seq -> ’a seq

val collect : ’a ord -> (’a * ’b) seq -> (’a * ’b seq) seq

15–210 Practice Final 18 of 22 December 2015

val collate : ’a ord -> ’a seq ord

val argmax : ’a ord -> ’a seq -> int

val $: ’a -> ’a seq

val % : ’a list -> ’a seq

end

ArraySequence Work Span

empty ()

O(1) O(1)
singleton a

length s

nth s i

subseq s (i, len)

tabulate f n
if f(i) has Wi work and Si span

O

(
n−1∑
i=0

Wi

)
O

(
n−1
max
i=0

Si

)
map f s
if f(s[i]) has Wi work and Si span, and |s| = n

zipWith f (s, t)
if f(s[i], t[i]) has Wi work and Si span, and min(|s|, |t|) = n

reduce f b s
if f does constant work and |s| = n

O(n) O(lg n)scan f b s
if f does constant work and |s| = n

filter p s
if p does constant work and |s| = n

flatten s O

(
n−1∑
i=0

(
1 + |s[i]|

))
O(lg |s|)

sort cmp s
if cmp does constant work and |s| = n

O(n lg n) O(lg2 n)

merge cmp (s, t)
if cmp does constant work, |s| = n, and |t| = m

O(m+ n) O(lg(m+ n))

append (s,t)
if |s| = n, and |t| = m

O(m+ n) O(1)

15–210 Practice Final 19 of 22 December 2015

signature TABLE =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type ’a t

type ’a table = ’a t

structure Set : SET where Key = Key and Seq = Seq

val size : ’a table -> int

val domain : ’a table -> Set.t

val range : ’a table -> ’a Seq.t

val toString : (’a -> string) -> ’a table -> string

val toSeq : ’a table -> (Key.t * ’a) Seq.t

val find : ’a table -> Key.t -> ’a option

val insert : ’a table * (Key.t * ’a) -> ’a table

val insertWith : (’a * ’a -> ’a) -> ’a table * (Key.t * ’a) -> ’a table

val delete : ’a table * Key.t -> ’a table

val empty : unit -> ’a table

val singleton : Key.t * ’a -> ’a table

val tabulate : (Key.t -> ’a) -> Set.t -> ’a table

val collect : (Key.t * ’a) Seq.t -> ’a Seq.t table

val fromSeq : (Key.t * ’a) Seq.t -> ’a table

val map : (’a -> ’b) -> ’a table -> ’b table

val mapKey : (Key.t * ’a -> ’b) -> ’a table -> ’b table

val filter : (’a -> bool) -> ’a table -> ’a table

val filterKey : (Key.t * ’a -> bool) -> ’a table -> ’a table

val reduce : (’a * ’a -> ’a) -> ’a -> ’a table -> ’a

val iterate : (’b * ’a -> ’b) -> ’b -> ’a table -> ’b

val iteratePrefixes : (’b * ’a -> ’b) -> ’b -> ’a table -> (’b table * ’b)

val union : (’a * ’a -> ’a) -> (’a table * ’a table) -> ’a table

val intersection : (’a * ’b -> ’c) -> (’a table * ’b table) -> ’c table

val difference : ’a table * ’b table -> ’a table

val restrict : ’a table * Set.t -> ’a table

val subtract : ’a table * Set.t -> ’a table

val $: (Key.t * ’a) -> ’a table

end

15–210 Practice Final 20 of 22 December 2015

signature SET =

sig

structure Key : EQKEY

structure Seq : SEQUENCE

type t

type set = t

val size : set -> int

val toString : set -> string

val toSeq : set -> Key.t Seq.t

val empty : unit -> set

val singleton : Key.t -> set

val fromSeq : Key.t Seq.t -> set

val find : set -> Key.t -> bool

val insert : set * Key.t -> set

val delete : set * Key.t -> set

val filter : (Key.t -> bool) -> set -> set

val reduceKey : (Key.t * Key.t -> Key.t) -> Key.t -> set -> Key.t

val iterateKey : (’a * Key.t -> ’a) -> ’a -> set -> ’a

val union : set * set -> set

val intersection : set * set -> set

val difference : set * set -> set

val $: Key.t -> set

end

15–210 Practice Final 21 of 22 December 2015

MkTreapTable Work Span

size T O(1) O(1)

filter f T ∑
(k 7→v)∈T

W (f(v)) lg |T |+ max
(k 7→v)∈T

S(f(v))
map f T

tabulate f X
∑
k∈X

W (f(k)) max
k∈X

S(f(k))

reduce f b T
if f does constant work

O(|T |) O(lg |T |)

insertWith f (T,(k,v))
if f does constant work O(lg |T |) O(lg |T |)

find T k
delete (T,k)

domain T
O(|T |) O(lg |T |)range T

toSeq T

collect S
O(|S| lg |S|) O(lg2 |S|)

fromSeq S

For each argument pair (A,B) below, let n = max(|A|, |B|) and m = min(|A|, |B|).

MkTreapTable Work Span

union f (X,Y)

O
(
m lg(n+m

m)
)

O
(
lg(n+m)

)intersection f (X,Y)
difference (X,Y)
restrict (T,X)

subtract (T,X)

15–210 Practice Final 22 of 22 December 2015

