Recitation 1 — Parenthesis Matching and SML Review (DRAFT)
Parallel and Sequential Data Structures and Algorithms, 15-210 (Fall 2012)

August 29, 2012

Welcome to 210! This recitation is aimed at helping you shake off some sand from the beach and
getting you started on Homework 1, which will be released later today. We will be using SML/NJ
as our default programming language, which you should be familiar with if you have taken 15-150
previously. For those who haven’t (graduate students, for example), we will be holding crash courses
today and tomorrow night in GHC 5201 (see Piazza for updates). We will expect you to write clean
and readable (self-documenting!) code as well as mathematical proofs.

1 Administrivia

Where is my assignment? We will be distributing the assignments for this course through a read-only
git! repository. To start you off, we've put together a handout on git commands, with pointers to
more advanced features:

http://www.cs.cmu.edu/~15210/resources/git.pdf

which will also be linked from the Resources page.

When are Office Hours? We want to accomodate your schedules, so please fill out the poll on Piazza.
When they have been finalized, Office Hours will be posted on the course webpage at

http://www.cs.cmu.edu/~15210/staff .html

These times are subject to change. If you have time conflicts and cannot attend any of the listed office
hourse, please contact one of the course staff.

What is my grade? If you want to know your grades, visit the Gradebook page on the course website
and follow the instructions there. You will need to log in with your WebISO credentials.

When are the ML tutorials? For those students with no prior experience with programming in ML,
there will be tutorials tonight and tomorrow at 8pm in the GHC 5201 computer clusters. For a
preview, see the brief tutorial and book referenced under SML Style Guide on the Resources page of
the course website.

lgit is a fully distributed version control system, initially developed for Linux kernel development. Since nobody reads
footnotes, we won’t go into any more detail here.

http://www.cs.cmu.edu/~15210/resources/git.pdf
http://www.cs.cmu.edu/~15210/staff.html

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2012)

2 Let’s Begin!

We'll begin with a running example: the parenthesis matching problem. We define it as follows:

e Input: a char sequence s : char Sequence.seq, where each s; is either an “(“ or “)”.
For instance, we could get a parenthesis-matched sequence

s=((G),(),)))

or a non-matching one

t=0,0),(),))

e Output: true if s represents a parenthesis-matched string and false otherwise. In the above
examples, the algorithm should output true on input s and false on input t.

To simplify the presentation, we will be working with a paren data type instead of characters. Specif-
ically, we will write a function match of type paren Sequence.seq -> bool that determines
whether the input is a well-formed parenthesis expression (i.e., it is a parenthesis-matched sequence).
The type paren is given by

datatype paren =
OPAREN
| CPAREN

where OPAREN represents an open parenthesis and CPAREN represents a close parenthesis.

So, how would we go about solving this problem? Lets begin with a simplest sequential solution and
work our way to a work-optimal parallel solution.

2.1 Sequence iter

As in 15-150, you will be making extensive use of a SEQUENCE library throughout this course. For
the current problem, we’ll use the function iter (for iterate) from the sequence library. It has the
following type:

val iter : (b * ’a -> ’b) -> ’b -> ’a seq -> ’b

If f is a function, b is a value, and s is a sequence, then iter f b g iterates f with left association
on s using b as the base case. You may think of f as a state transition function and b as a base state.

2.2 Back to Parentheses

How can we use this to solve the parenthesis matching problem? As we iterate across the sequence,
we can keep track of the number of open parentheses that we have seen so far and subtract from
this number when we find a closing one. When we reach the end of the sequence we should have 0,
given that we started at O.

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2012)

Is this sufficient?

No, if the number goes below zero at any point, then when we know we can’t possibly have a
well-formed parenthesis expression—we’ll designate a special state to represent this outcome.

What type should we use to represent the state?

You should be able to figure it out from the following code:

fun match s =
let
fun check (NONE, _) = NONE

| check (SOME c, OPAREN) = SOME (c+1)
| check (SOME 0, CPAREN) = NONE
| check (SOME c, CPAREN) = SOME (c-1)
in
(iter check (SOME 0) s) = (SOME 0)
end

You can show that this solution has O(n) work and span, where n is the length of the input sequence.
How can we make it more parallel?

3 Divide and Conquer

As you have already seen in previous classes, divide and conquer is a powerful technique in algorithms
design that often leads to efficient parallel algorithms. A typical divide and conquer algorithm consists
of 3 main steps (1) divide, (2) recurse, and (3) combine.

To follow this recipe, we first need to answer the question: how should we divide up the sequence?
We'll first try the simplest choice, which is to split it in half—and attempt the merge their results
somehow. This leads to the next question: what would the recursive calls return?

Let’s try returning whether the given sequence is well-formed. Clearly, if both s; and s, are well-
formed expressions, s; concatenated with s, must be a well-formed expression. However, we could
have s; and s, such that neither of which is well-formed but s;s, is well-formed (e.g., “(((” and “)))”).
This is not enough information to conclude whether s;s, is well-formed.

We need more information from the recursive calls. You are probably already familiar with a similar
situation from mathematical induction—you often need to strengthen the inductive hypothesis. We’ll
crucially rely on the following observations (which can be formally shown by induction):

Observation 3.1. If s contains “()” as a substring, then s is a well-formed parenthesis expression if and
only if s’ derived by removing this pair of parenthesis “()” from s is a well-formed expression.

Observation 3.2. If s does not contain “()” as a substring, then s has the form “)'(Y”. That is, it is a

sequence of close parens followed by a sequence of open parens.

That is to say, on a given sequence s, we'll keep simplifying s conceptually until it contains no substring
“()” and return the pair (i, j) as our result. This is relatively easy to do recursively. Consider that if

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2012)

s = $184, after repeatedly getting rid of “()” in s; and separately in s,, we’ll have that s; reduces to
“)(?” and s, reduces to Ykt for some i, j,k, £ € Z, U{0}. To completely simplify s, we merge the
results. That is, we merge “)'(” with “Yk(€». The rules are simple:

e If j <k (i.e., more close parens than open parens), we’ll get «) k=i (¢”,

e Otherwise j > k (i.e., more open parens than close parens), we’ll get “){(¢+/=%”,

This directly leads to a divide and conquer algorithm.

3.1 How to split a sequence in half?

The sequence library we give you provides a conceptual view of sequences called treeview that
lends itself particularly well to divide-and-conquer algorithms. For those of you who have used
listview in 15-150, this concept will be very familiar. To review, we have a data type ’a treeview
defined as follows:

datatype ’a treeview =
EMPTY
| ELT of ’a
| NODE of (’a seq * ’a seq)

The function showt provides a means to examine the sequence in the treeview:
val showt : ’a seq -> ’a treeview

Essentially, showt s splits the sequence in approximately half and returns both halves as sequences,
provided that the input sequence has length at least 2. The two base cases are for empty and singleton
sequences.

3.2 Implementing the algorithm in treeview

To make it more obvious which calls are being made in parallel, we will also introduce a function
par : (unit -> ’a) * (unit -> ’b) -> ’a * ’b
If yourun par (f, g), this construct allows you to execute the two functions f and g in parallel.

fun match s =
let
fun match’ s =
case showt s
of EMPTY => (0, 0)
| ELT OPAREN => (0, 1)

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2012)

| ELT CPAREN => (1, 0)
| NODE (L, R) =>
let
val ((i, j), (k, 1)) =
par (fn () => match’ L, fn () => match’ R)
in
if j > k then (i, 1 + j - k)
else (1 + k - j, 1)
end
in
match’ s = (0, 0)
end

Running Time Analysis: Let’s assume that showt s NONE takes O(logn) work and span on any
sequence of length n. We can formulate the work and span recurrences as follows:

W(n) = 2-W(n/2)+ Wspow(n) = 2-W(n/2)+ O(logn)
S(n) = S(n/2)+ Ssowe(n) = S(n/2) + O(logn).

It is not too hard to see that S(n) is O(log? n)

S(n) =log(n) +log(n/2)+ ... +1og(1)
<log(n) +log(n) + ... + log(n)
logn‘;mes

€ 0(log?n)

It is a little more work to see W(n) = O(n).

Lemma 1
lgn

Zzizzn—1

i=0

Proof. Take S = Zig:% 20 =20 421 4... 4 218" We can get the closed form directly using a

formula for geometric sums, but it’s easy to derive:

28 = 21+22+‘,_+21gn+21g(n+1)
S= 20+ 21+22+...+21gn

Subtracting S from 25, the terms in the middle cancel out and we’re left with

s =28+l _ 90 _9p_1

Parallel and Sequential Data Structures and Algorithms — Recitation 1 15-210 (Fall 2012)

Lemma 2
lgn

Zizi =2nlgn— (2n— 2)
i=0

Proof. Take S = Y% i20 =020+ 1-2! +2-2% 4 ... 4 1gn2/8™:

S= 1-2'4+ 2.2243.2%4...+1gn2ls"
28 = 1-2242-234... 4 (Ign—1)2'8" + 1gn2'8ntl

Subtracting 2S from S, we can apply Lemma 1 from above

—S=2'+22+4... 4 21" _]gp2lsntl
—S=(2n-2)—Ign2®®"*! = (2n—2) — 2nlgn
S=2nlgn—(2n—-2)

Theorem
W(n)=2W(n/2)+ O(lgn) € O(n)

Ign

W(n)= Zz" (a lg(n/2H) + b)
i=0
lgn Ign
= aZZi (Ign—1) + bZZi
i=0 i=0

lgn Ign Ign

=algn22i —aZi2i+ bZZi

i=0 i=0 i=0
=algn(2n—1)—a(2nlgn—(2n—-2))+b(2n—1) (Lemma 1&2)
=2anlgn—algn—2anlgn+2an—2a+2bn—->

=(a+b)2n—-1)—algn—ae0(n)

4 To Be Continued...

Homework 1 will be released later today, and due next Wednesday. There will be a proof of
correctness, but note that we will not be looking for a step-by-step code evaluation trace. You should
be familiar with SML evaluation by now, so we’ll be more interested in a higher-level discussion of
the algorithm itself. Please check the course website for updates on office hours if you have trouble.

