
Linear regression

Logistic regression

Decision trees

10-601

Machine Learning

Material from Ziv Bar-Joseph’s lecture slides and Christopher Bishop’s textbook

Linear regression

Linear regression

• Given an input x we would like to
compute an output y

• In linear regression we assume
that y and x are related with the
following equation:

y = wx+

where w is a parameter and 
represents measurement or
other noise

X

Y

What we are

trying to predict

Observed values

• Our goal is to estimate w from a training

data of <xi,yi> pairs

• This could be done using a least squares

approach

• Why least squares?

- minimizes squared distance between

measurements and predicted line

- has a nice probabilistic interpretation

- easy to compute

Linear regression

 
i

iiw wxy 2)(minarg
X

Y  wxy

If the noise is Gaussian

with mean 0 then least

squares is also the

maximum likelihood

estimate of w

Non-Linear basis function

• So far we only used the observed values

• However, linear regression can be applied in the same way to

functions of these values

• As long as these functions can be directly computed from the

observed values the parameters are still linear in the data and the

problem remains a linear regression problem.

• What type of functions can we use?

Non-Linear basis function

• What type of functions can we use?

• A few common examples:

- Polynomial: j(x) = xj for j=0 … n

- Gaussian:

- Sigmoid:



 j (x) 
(x  j)

2 j

2



 j (x) 
1

1 exp(s jx)
Any function of the input

values can be used. The

solution for the parameters

of the regression remains

the same.

General linear regression

problem
• Using our new notations for the basis function linear regression can

be written as

• Where j(x) can be either xj for multivariate regression or one of the

non linear basis we defined

• Once again we can use ‘least squares’ to find the optimal solution.

y  w j j (x)
j 0

n



LMS for the general linear

regression problem



y  w j j (x)
j 0

n





J(w)  (y i  w j j (x
i)

j

)
i


2

Our goal is to minimize the following

loss function:

Moving to vector notations we get:

We take the derivative w.r.t w



J(w)  (y i wT(x i))2

i







w
(y i wT(x i))2

i

  2 (y i wT(x i))
i

 (x i)T

Equating to 0 we get



2 (y i wT(x i))
i

 (x i)T  0

y i

i

 (x i)T wT (x i)
i

 (x i)T










LMS for general linear regression problem

We take the derivative w.r.t w



J(w)  (y i wT(x i))2

i







w
(y i wT(x i))2

i

  2 (y i wT(x i))
i

 (x i)T

Equating to 0 we get



2 (y i wT(x i))
i

 (x i)T  0

y i

i

 (x i)T wT (x i)
i

 (x i)T










Define:



 

0(x
1) 1(x

1) m (x
1)

0(x
2) 1(x

2) m (x
2)

0(x
n) 1(x

n) m (x
n)



















Then deriving w

we get:



w  (T)1Ty

Other types of linear regression

• Linear regression is a useful model for many problems

• However, the parameters we learn for this model are global; they

are the same regardless of the value of the input x

• Extension to linear regression adjust their parameters based on the

region of the input we are dealing with

Splines
• Instead of fitting one function for the entire region, fit a set of

piecewise (usually cubic) polynomials satisfying continuity and

smoothness constraints.

• Results in smooth and flexible functions without too many

parameters

• Need to define the regions in advance (usually uniform)



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3

Splines
• The polynomials are not independent

• For cubic splines we require that they agree in the border point on

the value, the values of the first derivative and the value of the

second derivative

• How many free parameters do we actually have?



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3

Splines
• Splines sometimes contain additional

requirements for the first and last

polynomial (for example, having them

start at 0)

• Once Splines are fitted to the data they

can be used to predict new values in the

same way as regular linear regression,

though they are limited to the support

regions for which they have been defined

• Note the range of functions that can be

displayed with relatively small number of

polynomials (in the example I am using

5)

Locally weighted models

• Splines rely on a fixed region for each polynomial and the weight of

all points within the region is the same.

• An alternative option is to set the region based on the density of the

input data and have points closer to the point we are trying to

estimate have a higher weight

Weighted regression
• For a point x we use weight function x centered at x to assign

weight to points in x’s vicinity

• Next we solve the following weighted regression problem

• The solution is the same as our general solution (the weight is

given for every input)



minw x(x
i)(y

i


i

wT(x i))2

x(x
1)=0.3

x1 x2x

x(x)=0.9

x(x
2)=0.7

Determining the weights

• There are a number of ways to determine the weights

• One option is to use a Gaussian centered at x, such that

2 is a parameter that should be selected by the user

e
ixx

i

x x 2

2

2

)(

2

1
)(








More on these weights when we

discuss kernels

Bayesian linear regression

• Frequentist setting

– Use MLE to calculate a single estimate of the weights as seen

previously

• Bayesian setting

– Calculate the posterior distribution of the weights

Bayesian linear regression

Image from Bishop

xwwy 10 

No observations

1 observation

2 observations

20 observations

As we observe more data, our

estimate of the weights

becomes more sharply peaked

Logistic regression

The sigmoid function

• To classify using regression models

we replace the linear function with the

sigmoid function:

• Using the sigmoid we set (for binary

classification problems)



g(h) 
1

1 eh


p(y | x;)

Always between 0
and 1



p(y  0 | x;)  g(wTx) 
1

1 ew
T x



p(y 1 | x;) 1 g(wTx) 
ew

T x

1 ew
T x

Regularization

• Like with other data estimation problems, we may not have enough

data to learn good models

• One way to overcome this is to ‘regularize’ the model, impose

additional constraints on the parameters we are fitting.

• For example, lets assume that wi comes from a Guassian

distribution with mean 0 and variance 2 (where 2 is a user defined

parameter): wi~N(0, 2)

• In that case we have:

)();|1()|,1( pxypxyp 

Regularization

• If we regularize the parameters we need to take the prior into

account when computing the posterior for our parameters

• Here we use a Gaussian model for the prior.

• Thus, the log likelihood changes to :

• And the new update rule (after taking the derivative w.r.t. wi) is:

 


j

jN

i

xwii
w

exyxwyLL
iT

2

2

1

T

2
)1ln(w)|;(



21
))};(1({




jN

i

iii

jjj

w
wxgyxww   

After removing

terms that are not

dependent on w

The variance of

our prior model
Also known as the MAP

estimate



p(y 1, | x) p(y 1| x;)p()

Regularization

• There are many other ways to regularize logistic regression

• The Gaussian model leads to an L2 regularization (we are trying to

minimize the square value of w)

• Another popular regularization is an L1 which tries to minimize |w|

The importance of the

regularization parameter
• Too small does not have a big impact

• Too large overrides the data

• An example of the training/test conditional log likelihoods as a

function of the regularization parameter 2

Average log

likelihood for data

only

Logistic regression for more

than 2 classes
• What if we have more than 2 classes?

• Can we use our existing binary logistic regression classifier?

• Should we?

One versus all

?

One versus one

?

What we would like

• Logistic regression can be used to classify data from more than 2

classes:

• For i<k we set

where

• And for k we have



p(y  i | x;)  g(wi0 wi1x1   wid xd)  g(w i

Tx)



g(zi) 
ezi

1 e
z j

j1

k1


zi  wi0  wi1x1   wid xd



p(y  k | x;) 
1

1 e
z j

j1

k1





p(y  k | x;) 1 p(y  i | x;)
i1

k1

 

Logistic regression for more

than 2 classes

• Logistic regression can be used to classify data from more than 2

classes:

• For i<k we set

where

• And for k we have



p(y  i | x;)  g(wi0 wi1x1   wid xd)  g(w i

Tx)



g(zi) 
ezi

1 e
z j

j1

k1


zi  wi0  wi1x1   wid xd



p(y  k | x;) 
1

1 e
z j

j1

k1





p(y  k | x;) 1 p(y  i | x;)
i1

k1

 

Binary logistic regression is a

special case of this rule

Logistic regression for more

than 2 classes

Update rule for logistic

regression with multiple classes





wm, j
l(w)  x j

i {m (y
i) p(y i  m | x i;w)}

i1

N



Where (yi)=1 if yi=m

and (yi)=0 otherwise

The update rule becomes:



wm, j  wm, j   x j
i {m(y

i) p(y i  m | x i;w)}
i1

N



Additive models

• Similar to what we did with linear regression we can extend logistic

regression to other transformations of the data

• As before, we are free to choose the basis functions



p(y 1| x;w)  g(wi0 w11(x) wdd (x))

Logistic regression’s name

• The name comes from the logit transformation:



log
p(y  i | x;)

p(y  k | x;)
 log

g(zi)

g(zk)
 wi0  wi1x1   wid xd

Decision trees

Structure of a decision tree
A

CI

Fyes no yes

yes no

A age > 26

I income > 40K

C citizen

F female

1 0
• Internal nodes

correspond to attributes

(features)

• Leafs correspond to

classification outcome

• Edges denote

assignment

Building a decision tree

Function BuildTree(n,A) // n: samples (rows), A: attributes

If empty(A) or all n(L) are the same

status = leaf

class = most common class in n(L)

else

status = internal

a  bestAttribute(n,A)

LeftNode = BuildTree(n(a=1), A \ {a})

RightNode = BuildTree(n(a=0), A \ {a})

end

end

Entropy

• Definition

• So, if P(X=1) = 1 then

• If P(X=1) = .5 then

)(log)()(2 iXpiXpXH
i



00log01log1

)0(log)0()1(log)1()(22



 XpxpXpxpXH

15.log5.log5.5.log5.

)0(log)0()1(log)1()(

222

22



 XpxpXpxpXH

H(X)

Conditional entropy

• We can generalize the conditional entropy idea to

determine H(Li | Le)

• That is, what is the expected number of bits we need to

transmit if both sides know the value of Le for each of the

records (samples)

• Definition:  
i

iYXHiYPYXH)|()()|(

Decision tree from class

D

Adamson

Singer
Lasseter

yes yesT

animated

comedy
drama

no noyes

Movie Type Length Director Famous

actors

Liked

?

m1 Comedy Short Adamson No Yes

m2 Animated Short Lasseter No No

m3 Drama Medium Adamson No Yes

m4 animated long Lasseter Yes No

m5 Comedy Long Lasseter Yes No

m6 Drama Medium Singer Yes Yes

M7 animated Short Singer No Yes

m8 Comedy Long Adamson Yes Yes

m9 Drama Medium Lasseter No Yes

Additional points

• The algorithm we gave reaches homogonous nodes (or

runs out of attributes)

• This is dangerous: For datasets with many (non relevant)

attributes the algorithm will continue to split nodes

• This will lead to overfitting!

Avoiding overfitting: Tree pruning

• Split data into train and test set

• Build tree using training set

- For all internal nodes (starting at the root)

- remove sub tree rooted at node

- assign class to be the most common among training set

- check test data error

- if error is lower, keep change

- otherwise restore subtree, repeat for all nodes in

subtree

Continuous values

• Either use threshold to turn into binary or discretize

• Its possible to compute information gain for all possible

tresholds (there are a finite number of training samples)

• Harder if we wish to assign more than two values (can

be done recursively)

The ‘best’ classifier

• There has been a lot of interest lately in decision trees.

• They are quite robust, intuitive and, surprisingly, very

accurate

Ranking classifiers

Rich Caruana & Alexandru Niculescu-Mizil, An Empirical Comparison of Supervised

Learning Algorithms, ICML 2006

Miscellaneous

We also discussed…

• Using only k nearest neighbors in the locally weighted

linear regression weight function

• Differences between Frequentist and Bayesian statistics

• Why the decision tree algorithm from class (ID3) doesn’t

guarantee the shortest possible consistent tree

• Rule-based decision tree pruning

• Splitting continuous values multiple times during decision

tree building

• Aggregating predictions from multiple weak classifiers,

especially decision trees (more on this in future lectures)

• Visualizing decision boundaries in 2d feature space for

classifiers we have studied

Problem set 2 clarifications

• 1.1.1 – When considering how many distinct thresholds

are needed, keep in mind we’re only interested in

thresholds that could potentially yield the maximum

information gain

• 4.4 – The fold vector is used to divide the data into train

and test sets. Your outer loop will look like:

for f = 1 to 10

train = data where fold[:] != f;

test = data where fold[:] == f;

…

end

