10-601
Machine Learning

Linear regression
Logistic regression
Decision trees

Material from Ziv Bar-Joseph’s lecture slides and Christopher Bishop’s textbook



Linear regression



Linear regression

« Given an input x we would like to
compute an output y

 Inlinear regression we assume
that y and x are related with the v
following equation:

Observed values

What we are ©
trying to predic;N /

Y = WX+e 6

where w is a parameter and ¢
represents measurement or
other noise



Linear regression
Y Y = WX

« Our goal is to estimate w from a training
data of <x,,y;> pairs o

« This could be done using a least squares
approach g

arg min,, " (y; —wx;)?

» Why least squares?

oL d di b If the noise is Gaussian
- MiNimizZes square IStance between with mean O then least

measurements and predicted line / squares is also the

maximum likelihood

- has a nice probabilistic interpretation .
estimate of w

- easy to compute



Non-Linear basis function

So far we only used the observed values

However, linear regression can be applied in the same way to
functions of these values

As long as these functions can be directly computed from the
observed values the parameters are still linear in the data and the
problem remains a linear regression problem.

What type of functions can we use?



Non-Linear basis function

« What type of functions can we use?

« A few common examples:

- Polynomial: ¢;(x) = xi for j=0 ... n

- Gaussian: ¢j(x) =

- Sigmoid:

¢j(x):

(x_:uj)
20?

1

1+exp(—s;x)

Any function of the input
values can be used. The
solution for the parameters
of the regression remains
the same.



General linear regression
problem

Using our new notations for the basis function linear regression can

be written as L
y=2w,4,(x)
j=0

Where ¢;(x) can be either x; for multivariate regression or one of the
non linear basis we defined

Once again we can use ‘least squares’ to find the optimal solution.



LMS for the general linear
regression problem

Our goal is to minimize the following Y= ij¢j (x)
loss function: j=0

JwW) =207 = 2w, (D)

n

Moving to vector notations we get:
] T ] 2
Jw) =D (v —w g(x"))
We take the derivative w.r.t w

30w ) =230 W )

Equating to 0 we get ZZ(yi —w'd(xNP(xH' =0 =

27! =wT[Z¢<x")¢(x">T}



LMS for general linear regression problem
We take the derivative W.r.t w )= Zi:(y WD)
30w =20 W R )
Equc':lting to 0 we get 221(yi WA NAx) =0 =

Ziv"qﬁ(x"f =W{Z¢<x">¢<x"f}

Define: S(x)  H(x) - @.(x)
A7) A ()

Go(x") H(x") 0 P, (x7)

Then deriving w

we get: W = ((DT(D)_ICDTY



Other types of linear regression

Linear regression is a useful model for many problems

However, the parameters we learn for this model are global; they
are the same regardless of the value of the input x

Extension to linear regression adjust their parameters based on the
region of the input we are dealing with

R-l plot raw data

logy(R*G)



Splines

« Instead of fitting one function for the entire region, fit a set of
piecewise (usually cubic) polynomials satisfying continuity and
smoothness constraints.

 Results in smooth and flexible functions without too many
parameters

» Need to define the regions in advance (usually uniform)

. 3 2
yv=a,x" +b,x " +c,x+d,

y=ax’+bx’+cx+d, y=ax’ +bx’+c,x+d,




Splines
* The polynomials are not independent

« For cubic splines we require that they agree in the border point on
the value, the values of the first derivative and the value of the
second derivative

« How many free parameters do we actually have?

. 3 2
yv=a,x" +b,x " +c,x+d,

y=ax’+bx’+cx+d, y=ax’ +bx’+c,x+d,




Splines

 Splines sometimes contain additional
requirements for the first and last

pOIynomiaI (for example, haVing them 14432800-15CTS)  349720%-14 OLES 1630041810 EGT2
start at 0) N % :
o} \ 0 1 2 -~
. . \._’ - W P 0 . '4
 Once Splines are fitted to the data they - . ’ 3
can be used to pl‘ediCt new values in the 80995516-03 VERIZAC 1f34?82&—08 ALDE  2.716782e-08 YHR143W
same way as regular linear regression, Rz 73 12 D\'_\h}[}
~fe 14\ :
; -1

though they are limited to the support .
regions for which they have been defined  ssssese-os vimsac

G

.503175e-08 YBR158W 9.716452e-08 YNLOSEC

 Note the range of functions that can be
displayed with relatively small number of
polynomials (in the example | am using
5)

1
- O = ™Noen




Locally weighted models

« Splines rely on a fixed region for each polynomial and the weight of
all points within the region is the same.

« An alternative option is to set the region based on the density of the
Input data and have points closer to the point we are trying to
estimate have a higher weight

R-l plot raw data

logy(R*G)



Welighted regression

For a point X we use weight function Q, centered at X to assign
weight to points in x’s vicinity
Next we solve the following weighted regression problem

min,, 2 Q. (<)(y ~w" (x))

l
The solution is the same as our general solution (the weight is
given for every input)

2)=
Q. (x1)=0.3 Qx(xg 0.7

O
Q. (x)=0.9




Determining the weights

 There are a number of ways to determine the weights

« One option is to use a Gaussian centered at X, such that
. (x x')?
Q (x') = o’
\/ G

o’ is a parameter that should be selected by the user

More on these weights when we
discuss kernels



Bayesian linear regression

* Frequentist setting

— Use MLE to calculate a single estimate of the weights as seen
previously

« Bayesian setting
— Calculate the posterior distribution of the weights



Bayesian linear regression

likelihood prior/posterior data space

No observations

As we observe more data, our
estimate of the weights

becomes more sharply peaked S
1
y
Yy =W, +W,X 1 observation i
5
-1 0 2z 1
1 1
. ; Y
2 observations “0 0 2
5|
-1 0 x 1
1 1
. w1 Yy
20 observations 0 o 93
8 o]
o ©
Image from Bishop E " 0 » |




Logistic regression



The sigmoid function
p(y [ x;0)

* To classify using regression models
we replace the linear function with the
sigmoid function:

Always between 0 — g(h) = 1 !
and 1 1+ e—h 0ot

* Using the sigmoid we set (for binary e
classification problems)

1 03}
P =0]x0)=gw x)=—— =
1_|_e 01t

T

ewx _ - - h

p(y=11x;0)=1-gW x)=——+
l+e




Regularization

Like with other data estimation problems, we may not have enough
data to learn good models

One way to overcome this is to ‘regularize’ the model, impose
additional constraints on the parameters we are fitting.

For example, lets assume that w,comes from a Guassian
distribution with mean 0 and variance c? (where o2 is a user defined
parameter): wi~N(0, ¢?)

In that case we have:

p(y =10 x) < p(y =1| x;0) p(0)



Regularization

If we regularize the parameters we need to take the prior into
account when computing the posterior for our parameters

p(y=L0|x)xp(y=1|x;60)p(6)

Here we use a Gaussian model for the prior.

Thus, the log likelihood changes to : , / After removing
_ N i Ty | WX W, terms that are not
LL(y;w|x)=>" y'w'x'~In(l+e )_Z 27 dependent on w
J

And the new update rule (after taking the derivative w.r.t. w,) is:

N i, i . Wj
w; <—w;+&) - X {y' —(1-9g(x ,W))}—S—\GZ
The variance of

our prior model
Also known as the MAP

estimate



Regularization

There are many other ways to regularize logistic regression

The Gaussian model leads to an L2 regularization (we are trying to
minimize the square value of w)

Another popular regularization is an L1 which tries to minimize |w|



The importance of the
regularization parameter

 Too small does not have a big impact
* Too large overrides the data

* An example of the training/test conditional log likelihoods as a
function of the regularization parameter c?

Average log
likelihood for data —— =
only :




Logistic regression for more
than 2 classes

 What if we have more than 2 classes?
« Can we use our existing binary logistic regression classifier?
« Should we?



One versus all

?



One versus one



What we would like



Logistic regression for more
than 2 classes

» Logistic regression can be used to classify data from more than 2
classes:

 For i<k we set
p(y=i|x;0)=gw,+wx +...+ w,x,)= g(WiTx)

where g(Zl.) = -1 Z; =Wyt WX+t WX,




Logistic regression for more
than 2 classes

» Logistic regression can be used to classify data from more than 2
classes:

 For i<k we set
p(y=i|x;0)=gw,+wx +...+ w,x,)= g(WiTx)

where g(z;) =




Update rule for logistic
regression with multiple classes

T i)=Y X148, - p( =m| x5}

oW, ; /

Where 5(y")=1 if y'=m
and 5(y')=0 otherwise

The update rule becomes:

ZN i5 i i i
Wm,j(_wm,j_l_g izlxj{ m(y)_p(y _m|x 9W)}



Additive models

Similar to what we did with linear regression we can extend logistic
regression to other transformations of the data

py=1{x;w)=gw,+wa(x)+---+w,9,(x))

As before, we are free to choose the basis functions



Logistic regression’s name

 The name comes from the logit transformation:

1gp(y i |x;0) 1gg(Z,-)
p(y=k|x,0) g(z,)

=Wyt WXy +.oo W X,



Decision trees



Structure of a decision tree

A age > 26
* Internal nodes

_ | income > 40K
correspond to attributes
C citizen
(features)
F female
* Leafs correspond to
classification outcome

Yes no

« Edges denote
assignment
yes N0 yes



Building a decision tree

Function BuildTree(n,A) /[ n: samples (rows), A: attributes
If empty(A) or all n(L) are the same

status = leaf
class = most common class in n(L)
else

status = internal
a < bestAttribute(n,A)
LeftNode = BuildTree(n(a=1), A\ {a})
RightNode = BuildTree(n(a=0), A\ {a})
end
end



« S0, iIf P(X=1) = 1 then

Entropy HOO 10 4

* Definition 051

H(X)=2_— p(X =)log, p(X =i)

0 | >

0 0.5 1.0
Pr(X =1)

H(X) =-p(x=1)log, p(X =1) - p(x =0)log, p(X =0)
=—1logl-0log0=0

« If P(X=1) = .5 then

H(X)=-p(x=1)log, p(X =1) - p(x=0)log, p(X =0)
=—.5log,.5-.5log,.5=-log,.5=1



Conditional entropy

 We can generalize the conditional entropy idea to
determine H( Li | Le)

« That s, what is the expected number of bits we need to

transmit if both sides know the value of Le for each of the
records (samples)

« Definition: H(X|Y)=ZP(Y:i)H(X|Y:i)



Adamson

yes

animated

no

Decision tree from class

Lasseter

dram

yes

Singer

yes

comedy

no

Movie | Type Length | Director Famous | Liked
actors ?

m1l Comedy Short Adamson No Yes
m2 Animated | Short Lasseter No No
m3 Drama Medium | Adamson No Yes
m4 animated | long Lasseter Yes No
m5 Comedy Long Lasseter Yes No
m6 Drama Medium | Singer Yes Yes
M7 animated | Short Singer No Yes
m8 Comedy Long Adamson | Yes Yes
m9 Drama Medium | Lasseter No Yes




Additional points

The algorithm we gave reaches homogonous nodes (or
runs out of attributes)

This is dangerous: For datasets with many (non relevant)
attributes the algorithm will continue to split nodes

This will lead to overfitting!



Avoiding overfitting: Tree pruning

e Split data into train and test set
« Build tree using training set
- For all internal nodes (starting at the root)
- remove sub tree rooted at node
- assign class to be the most common among training set
- check test data error
- if error is lower, keep change

- otherwise restore subtree, repeat for all nodes in
subtree



Continuous values

Either use threshold to turn into binary or discretize

Its possible to compute information gain for all possible
tresholds (there are a finite number of training samples)

Harder if we wish to assign more than two values (can
be done recursively)



The ‘best’ classifier

* There has been a lot of interest lately in decision trees.

« They are quite robust, intuitive and, surprisingly, very
accurate



Ranking classifiers
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Miscellaneous



We also discussed...

Using only k nearest neighbors in the locally weighted
linear regression weight function

Differences between Frequentist and Bayesian statistics

Why the decision tree algorithm from class (ID3) doesn’t
guarantee the shortest possible consistent tree

Rule-based decision tree pruning

Splitting continuous values multiple times during decision
tree building

Aggregating predictions from multiple weak classifiers,
especially decision trees (more on this in future lectures)

Visualizing decision boundaries in 2d feature space for
classifiers we have studied



Problem set 2 clarifications

 1.1.1 — When considering how many distinct thresholds
are needed, keep in mind we're only interested in
thresholds that could potentially yield the maximum
Information gain

« 4.4 —The fold vector is used to divide the data into train
and test sets. Your outer loop will look like:

forf=11to 10
train = data where fold[:] !=f;
test = data where fold[:] == f;

end



