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Probabilistic Reasoning and Inference: 

Statistics and distributions 



Outline

• Continuous distributions

– Probability density functions, Cumulative density functions

– Recap on the probability rules

• Gaussian distribution, multivariate Gaussian

• Density estimation example

– Joint density estimation

– Naïve density estimation

• Preview of Bayesian networks



Probability Density Function

• Discrete distributions

• Continuous: Cumulative Density Function (CDF): F(a)
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X is the event space



Cumulative Density Functions

• Total probability

• Probability Density Function (PDF)

• Properties:

F(x)



Expectations

• Mean/Expected Value:

• Variance:

– Note:

• In general:



Multivariate

• Joint for (x,y)

• Marginal:

• Conditionals:

• Chain rule: 



Bayes Rule

• Standard form:

• Replacing the bottom:



Binomial

• Distribution:

• Mean/Var:

a discrete probability distribution of the number 

of successes in a sequence of n independent 

yes/no experiments.

p is the probability of success



Uniform

• Anything is equally likely in the region [a,b]

• Distribution:

• Mean/Var

a b



Gaussian (Normal)

• If I look at the height of women in country xx, it will look approximately 

Gaussian

• Distribution:

• Mean/var



Why Do People Use Gaussians

• Central Limit Theorem: (loosely)

Sum of a large number of independent and identically 

distributed (IID) random variables is approximately 

Gaussian



Multivariate Gaussians

• Distribution for vector x

• PDF:



Multivariate Gaussians
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Covariance examples
Anti-correlated

Covariance: -9.2

Correlated

Covariance: 18.33

Independent (almost)

Covariance: 0.6



Sum of Gaussians

• The sum of two Gaussians is a Gaussian:



Independence

• In some cases the additional 

information does not help

• In this case, the extra 

knowledge about rain does not 

change our prediction

• Slept and rain are independent!

P(slept) = 0.5

P(slept | rain = 1) = 0.5

Liked 

movie

Slept raining P

1 1 1 0.05

1 0 1 0.1

0 0 1 0.025

0 1 1 0.075

1 1 0 0.15

1 0 0 0.3

0 0 0 0.075

0 1 0 0.225



Independence (cont.)

• Notation: P(S | R) = P(S)

• Using this we can derive the following:

- P(S | R) = P(S)

- P(S,R) = P(S)P(R)

- P(R | S) = P(R)



Independence

• Independence allows for easier models, learning and 

inference

• For our example: 

- P(raining, slept movie) = P(raining)P(slept movie)

- Instead of 4 by 2 table (4 parameters), only 2 are 

required

- The saving is even greater if we have many more 

variables … 

• In many cases it would be useful to assume 

independence, even if its not the case



Conditional independence

• Two dependent random variables may become 

independent when conditioned on a third variable:

P(A,B | C) = P(A | C) P(B | C)

• Example

P(liked movie) = 0.5

P(slept) = 0.4

P(liked movie, slept) = 0.1

P(liked movie | long) = 0.4

P(slept | long) 0.6

P(slept, like movie | long) = 0.24 

Given knowledge of length, 

the two other variables 

become independent



Bayesian networks

• Bayesian networks are directed graphs with 

nodes representing random variables and 

edges representing dependency assumptions
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What you should know
• Thoroughly understand:

– Probability theory

– The different distributions


