10601

Probabilistic Reasoning and Inference: Statistics and distributions

Outline

- Continuous distributions
- Probability density functions, Cumulative density functions
- Recap on the probability rules
- Gaussian distribution, multivariate Gaussian
- Density estimation example
- Joint density estimation
- Naïve density estimation
- Preview of Bayesian networks

Probability Density Function

- Discrete distributions

X is the event space
$\sum_{i} P\left(X=x_{i}\right)=1$
- Continuous: Cumulative Density Function (CDF): F(a)

Cumulative Density Functions

- Total probability

$$
P(\Omega)=\int_{-\infty}^{\infty} f(x) d x=1
$$

- Probability Density Function (PDF)
- Properties:

$$
\frac{d}{d x} F(x)=f(x)
$$

$$
P(a \leq x \leq b)=\int_{b}^{a} f(x) d x=F(b)-F(a)
$$

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} F(x)=0 \\
& \lim _{x \rightarrow \infty} F(x)=1 \\
& F(a) \geq F(b) \forall a \geq b
\end{aligned}
$$

Expectations

- Mean/Expected Value:

$$
E[x]=\bar{x}=\int x f(x) d x
$$

- Variance:
- Note:

$$
\operatorname{Var}(x)=E\left[(x-\bar{x})^{2}\right]=E\left[x^{2}\right]-(\bar{x})^{2}
$$

- In general:

$$
\begin{gathered}
E\left[x^{2}\right]=\int x^{2} f(x) d x \\
E[g(x)]=\int g(x) f(x) d x
\end{gathered}
$$

Multivariate

- Joint for (x, y)

$$
P((x, y) \in A)=\iint_{A} f(x, y) d x d y
$$

- Marginal:
- Conditionals:

$$
f(x)=\int f(x, y) d y
$$

- Chain rule:

$$
f(x \mid y)=\frac{f(x, y)}{f(y)}
$$

$$
f(x, y)=f(x \mid y) f(y)=f(y \mid x) f(x)
$$

Bayes Rule

- Standard form:

$$
f(x \mid y)=\frac{f(y \mid x) f(x)}{f(y)}
$$

- Replacing the bottom:

$$
f(x \mid y)=\frac{f(y \mid x) f(x)}{\int f(y \mid x) f(x) d x}
$$

Binomial

- Distribution: a discrete probability distribution of the number of successes in a sequence of n independent yes/no experiments.
p is the probability of success
- Mean/Var:

$$
x \sim \operatorname{Binomial}(p, n)
$$

$$
P(x=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

$$
E[x]=n p
$$

$$
\operatorname{Var}(x)=n p(1-p)
$$

Uniform

- Anything is equally likely in the region $[a, b]$
- Distribution: $\quad x \sim U(a, b)$
- Mean/Var

$$
f(x)= \begin{cases}\frac{1}{b-a} & a \leq x \leq b \\ 0 & \text { otherwise }\end{cases}
$$

$$
\begin{gathered}
E[x]=\frac{a+b}{2} \\
\operatorname{Var}(x)=\frac{a^{2}+a b+b^{2}}{3}
\end{gathered}
$$

Gaussian (Normal)

- If I look at the height of women in country xx , it will look approximately Gaussian
- Distribution:
- Mean/var

$$
x \sim N\left(\mu, \sigma^{2}\right)
$$

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

$$
\begin{gathered}
E[x]=\mu \\
\operatorname{Var}(x)=\sigma^{2}
\end{gathered}
$$

Why Do People Use Gaussians

- Central Limit Theorem: (loosely)

Sum of a large number of independent and identically distributed (IID) random variables is approximately

Gaussian

Multivariate Gaussians

- Distribution for vector x

$$
x=\left(x_{1}, \ldots, x_{N}\right)^{T}, \quad x \sim N(\mu, \Sigma)
$$

- PDF:

$$
f(x)=\frac{1}{(2 \pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)}
$$

$$
E[x]=\mu=\left(E\left[x_{1}\right], \ldots, E\left[x_{N}\right]\right)^{T}
$$

$$
\operatorname{Var}(x) \rightarrow \Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{1}, x_{N}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \operatorname{Var}\left(x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{2}, x_{N}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(x_{N}, x_{1}\right) & \operatorname{Cov}\left(x_{N}, x_{2}\right) & \ldots & \operatorname{Var}\left(x_{N}\right)
\end{array}\right)
$$

Multivariate Gaussians

$$
\begin{gathered}
f(x)=\frac{1}{(2 \pi)^{\frac{N}{2}}|\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)} \\
E[x]=\mu=\left(E\left[x_{1}\right], \ldots, E\left[x_{N}\right]\right)^{T} \\
\operatorname{Var}(x) \rightarrow \Sigma=\left(\begin{array}{cccc}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{1}, x_{N}\right) \\
\operatorname{Cov}\left(x_{2}, x_{1}\right) & \operatorname{Var}\left(x_{2}\right) & \ldots & \operatorname{Cov}\left(x_{2}, x_{N}\right) \\
\vdots & & \ddots & \vdots \\
\operatorname{Cov}\left(x_{N}, x_{1}\right) & \operatorname{Cov}\left(x_{N}, x_{2}\right) & \ldots & \operatorname{Var}\left(x_{N}\right)
\end{array}\right) \\
\operatorname{cov}\left(x_{1}, x_{2}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(x_{1, i}-\mu_{1}\right)\left(x_{2, i}-\mu_{2}\right)
\end{gathered}
$$

Covariance examples

Covariance: -9.2

Correlated

Covariance: 18.33

Sum of Gaussians

- The sum of two Gaussians is a Gaussian:

$$
\begin{aligned}
& x \sim N\left(\mu, \sigma^{2}\right) y \sim N\left(\mu_{y}, \sigma_{y}^{2}\right) \\
& a x+b \sim N\left(a \mu+b,(a \sigma)^{2}\right) \\
& x+y \sim N\left(\mu+\mu_{y}, \sigma^{2}+\sigma_{y}^{2}\right)
\end{aligned}
$$

- In some cases the additional information does not help

$$
\begin{aligned}
& P(\text { slept })=0.5 \\
& P(\text { slept } \mid \text { rain }=1)=0.5
\end{aligned}
$$

- In this case, the extra knowledge about rain does not change our prediction

Liked movie	Slept	raining	P
1	1	1	0.05
1	0	1	0.1
0	0	1	0.025
0	1	1	0.075
1	1	0	0.15
1	0	0	0.3
0	0	0	0.075
0	1	0	0.225

- Slept and rain are independent!

Independence (cont.)

- Notation: $P(S \mid R)=P(S)$
- Using this we can derive the following:
- $\mathrm{P}(\neg S \mid R)=P(\neg S)$
$-P(S, R)=P(S) P(R)$
$-P(R \mid S)=P(R)$

Independence

- Independence allows for easier models, learning and inference
- For our example:
$-\mathrm{P}($ raining, slept movie $)=\mathrm{P}$ (raining $) \mathrm{P}($ slept movie $)$
- Instead of 4 by 2 table (4 parameters), only 2 are required
- The saving is even greater if we have many more variables ...
- In many cases it would be useful to assume independence, even if its not the case

Conditional independence

- Two dependent random variables may become independent when conditioned on a third variable:
$P(A, B \mid C)=P(A \mid C) P(B \mid C)$
- Example
$\mathrm{P}($ liked movie $)=0.5$
P (slept) $=0.4$
$\mathrm{P}($ liked movie, slept $)=0.1$
$P($ liked movie | long $)=0.4$
P(slept | long) 0.6
$P($ slept, like movie \mid long $)=0.24$

Bayesian networks

- Bayesian networks are directed graphs with nodes representing random variables and edges representing dependency assumptions

What you should know

- Thoroughly understand:
- Probability theory
- The different distributions

