10601

Probabilistic Reasoning and Inference: Statistics and distributions

Outline

- Continuous distributions
 - Probability density functions, Cumulative density functions
 - Recap on the probability rules
- Gaussian distribution, multivariate Gaussian
- Density estimation example
 - Joint density estimation
 - Naïve density estimation
- Preview of Bayesian networks

Probability Density Function

Discrete distributions

X is the event space

$$\sum_{i} P(X = x_i) = 1$$

Continuous: Cumulative Density Function (CDF): F(a)

Cumulative Density Functions

Total probability

$$P(\Omega) = \int_{-\infty}^{\infty} f(x)dx = 1$$

Probability Density Function (PDF)

$$\frac{d}{dx}F(x) = f(x)$$

Properties:

$$P(a \le x \le b) = \int_b^a f(x)dx = F(b) - F(a)$$

$$\lim_{x \to -\infty} F(x) = 0$$
$$\lim_{x \to \infty} F(x) = 1$$

$$F(a) \ge F(b) \ \forall a \ge b$$

Expectations

Mean/Expected Value:

$$E[x] = ar{x} = \int x f(x) dx$$

Variance:

- Note:

$$Var(x) = E[(x - \bar{x})^2] = E[x^2] - (\bar{x})^2$$

In general:

$$E[x^2] = \int x^2 f(x) dx$$

$$E[g(x)] = \int g(x)f(x)dx$$

Multivariate

• Joint for (x,y)

$$P\left((x,y)\in A
ight)=\int\int_A f(x,y)dxdy$$

Marginal:

$$f(x) = \int f(x,y)dy$$

Conditionals:

$$f(x|y) = \frac{f(x,y)}{f(y)}$$

Chain rule:

$$f(x,y) = f(x|y)f(y) = f(y|x)f(x)$$

Bayes Rule

Standard form:

$$f(x|y) = \frac{f(y|x)f(x)}{f(y)}$$

Replacing the bottom:

$$f(x|y) = \frac{f(y|x)f(x)}{\int f(y|x)f(x)dx}$$

Binomial

Distribution:

a <u>discrete</u> probability distribution of the number of successes in a sequence of *n* <u>independent</u> yes/no experiments.

p is the probability of success

Mean/Var:

$$x \sim Binomial(p, n)$$

$$P(x=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$E[x] = np$$

$$Var(x) = np(1-p)$$

Uniform

- Anything is equally likely in the region [a,b]
- Distribution:

$$x \sim U(a,b)$$

$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$$

Mean/Var

$$E[x] = rac{a+b}{2}$$
 $Var(x) = rac{a^2+ab+b^2}{3}$

Gaussian (Normal)

- If I look at the height of women in country xx, it will look approximately Gaussian
- Distribution:

Mean/var

$$x \sim N(\mu, \sigma^2)$$

$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{rac{-(x-\mu)^2}{2\sigma^2}}$$

$$E[x] = \mu$$
 $Var(x) = \sigma^2$

Why Do People Use Gaussians

Central Limit Theorem: (loosely)

Sum of a large number of independent and identically distributed (IID) random variables is approximately Gaussian

Multivariate Gaussians

Distribution for vector x

$$x = (x_1, \ldots, x_N)^T, \quad x \sim N(\mu, \Sigma)$$

• PDF: $f(x) = rac{1}{(2\pi)^{rac{N}{2}}|\Sigma|^{rac{1}{2}}}e^{-rac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)}$

$$E[x] = \mu = (E[x_1], \dots, E[x_N])^T$$

$$Var(x)
ightarrow \Sigma = \left(egin{array}{cccc} Var(x_1) & Cov(x_1,x_2) & \dots & Cov(x_1,x_N) \\ Cov(x_2,x_1) & Var(x_2) & \dots & Cov(x_2,x_N) \\ dots & \ddots & dots \\ Cov(x_N,x_1) & Cov(x_N,x_2) & \dots & Var(x_N) \end{array}
ight)$$

Multivariate Gaussians

$$f(x) = \frac{1}{(2\pi)^{\frac{N}{2}} |\Sigma|^{\frac{1}{2}}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

$$E[x] = \mu = (E[x_1], \dots, E[x_N])^T$$

$$Var(x) \to \Sigma = \begin{pmatrix} Var(x_1) & Cov(x_1, x_2) & \dots & Cov(x_1, x_N) \\ Cov(x_2, x_1) & Var(x_2) & \dots & Cov(x_2, x_N) \\ \vdots & & \ddots & \vdots \\ Cov(x_N, x_1) & Cov(x_N, x_2) & \dots & Var(x_N) \end{pmatrix}$$

$$cov(\boldsymbol{\chi}_1, \boldsymbol{\chi}_2) = \frac{1}{n} \sum_{i=1}^{n} (x_{1,i} - \mu_1)(x_{2,i} - \mu_2)$$

Covariance examples

Covariance: -9.2

Covariance: 0.6

Covariance: 18.33

Sum of Gaussians

The sum of two Gaussians is a Gaussian:

$$x \sim N(\mu, \sigma^2)$$
 $y \sim N(\mu_y, \sigma_y^2)$ $ax + b \sim N(a\mu + b, (a\sigma)^2)$ $x + y \sim N(\mu + \mu_y, \sigma^2 + \sigma_y^2)$

Independence

In some cases the additional information does not help

```
P(slept) = 0.5P(slept | rain = 1) = 0.5
```

- In this case, the extra knowledge about rain does not change our prediction
- Slept and rain are independent!

Liked movie	Slept	raining	Р
1	1	1	0.05
1	0	1	0.1
0	0	1	0.025
0	1	1	0.075
1	1	0	0.15
1	0	0	0.3
0	0	0	0.075
0	1	0	0.225

Independence (cont.)

- Notation: P(S | R) = P(S)
- Using this we can derive the following:
 - $-P(\neg S \mid R) = P(\neg S)$
 - -P(S,R) = P(S)P(R)
 - $-P(R \mid S) = P(R)$

Independence

- Independence allows for easier models, learning and inference
- For our example:
 - P(raining, slept movie) = P(raining)P(slept movie)
 - Instead of 4 by 2 table (4 parameters), only 2 are required
 - The saving is even greater if we have many more variables ...
- In many cases it would be useful to assume independence, even if its not the case

Conditional independence

 Two dependent random variables may become independent when conditioned on a third variable:

$$P(A,B \mid C) = P(A \mid C) P(B \mid C)$$

Example

$$P(liked movie) = 0.5$$

$$P(slept) = 0.4$$

$$P(liked movie, slept) = 0.1$$

P(liked movie | long) = 0.4

P(slept | long) 0.6

P(slept, like movie | long) = 0.24

Given knowledge of length, the two other variables become independent

Bayesian networks

 Bayesian networks are directed graphs with nodes representing random variables and edges representing dependency assumptions

What you should know

- Thoroughly understand:
 - Probability theory
 - The different distributions