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How will we spend our final recitation?

• HMM review

• Generalizing HMMs

• PS5 questions



Hidden Markov Models
• Often represented using state transition diagram

• Example for homework grades

• Parameters:

– Initial state probabilities

– Transition probabilities

– Emission probabilities
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Hidden Markov Models
• Markov assumption allows us to use this compact 

representation

• What are the nodes in this diagram?

• How many random variables?
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Unrolling HMMs
• We can “unroll” the HMM and explicitly show the 

variables

• At each of the 5 time points:

– One binary variable for state (hidden)

– One continuous variable for output (observed)
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Unrolling HMMs
• We still have shared transition and emission probabilities

• Use qt = 0 to be state U and qt = 1 to be state H
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HMM d-separation
• d-separation can be used to read independence 

assumptions

• q3 | q1 | q2 (Markov assumption)

• o5 | o3 | q2

• o5 | o1 | q2
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• May be helpful to think about the terms we defined for HMM 

inference using this representation

• α5(i=1) = P(o1=81,o2=97,o3=92,o4=44,o5=88,q5=1)

= Σk b1(o5=88) ak,1 α4(k) 

= Σk P(o5=88|q5=1)P(q5=1|q4=k)P(o1=81,o2=97,o3=92,o4=44,q4=k)

HMM inference
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HMM limitations
• In their simplest form HMMs make strong assumptions

– State only depends on previous state

– Discrete state variables

– Output only depends on hidden state

• These assumptions can be helpful

– Inference is relatively easy

– Few parameters needed

• Sometimes these assumptions are too restrictive

• High level overviews of how assumptions are relaxed

• Inference and learning can be much more difficult for 

some of the following extensions



Second order HMMs
• Hidden state depends on the two previous states

• Useful for natural language processing

• Can be extended to nth order HMM

– State depends on n previous states
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Input-Output HMMs
• Hidden states and output depend on another observed 

sequence

• Still have q3 | q1 | q2
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Factorial HMMs
• Using a single hidden variable for all hidden states would 

often lead to huge state space

• Instead use more than one chain of hidden variables

• Output depends on both hidden states
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Linear dynamical systems
• Hidden states are multivariate Gaussian distributions

• State qt is linear function of state qt-1 plus noise

q1 = μ0 + u u ~ N(u | 0,V0)

qt = Aqt-1 + wt w ~ N(w | 0,Γ)

ot = Cqt + vt v ~ N(v | 0,Σ)

• A.k.a. Kalman filters
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Dynamic Bayesian networks
• All of the previous models are special cases of dynamic 

Bayesian networks (DBNs)

• At each time point

– Set of hidden variables

– Set of observed variables

• Variables can be discrete or continuous

• Two-slice temporal Bayesian network defines the 

structure and distributions

• Kevin Murphy’s DBN tutorial for much more detail



Two-slice temporal Bayesian network

• Hidden variables at time t-1 and t

• Observed variables at time t

At-1 Xt

Ct-1

Bt-1

Dt-1

At

Ct

Bt

Dt

Yt



Two-slice temporal Bayesian network

• Structure and distributions hold between all consecutive 

time points

• Only hidden nodes shown here
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PS5
• In 5.1 show the state transition diagram not the unrolled 

probabilistic graphical model

• Any questions?


