Temporal Models

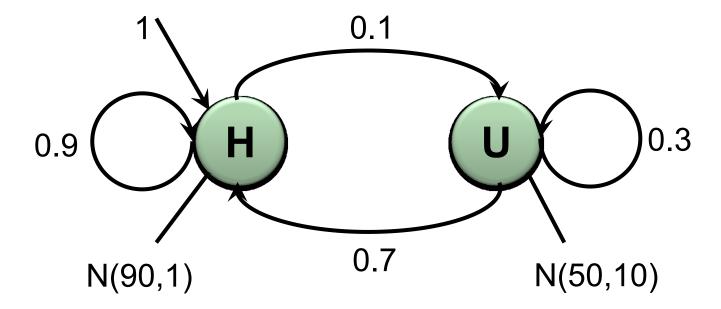
Anthony Gitter November 15, 2010

How will we spend our final recitation?

- HMM review
- Generalizing HMMs
- PS5 questions

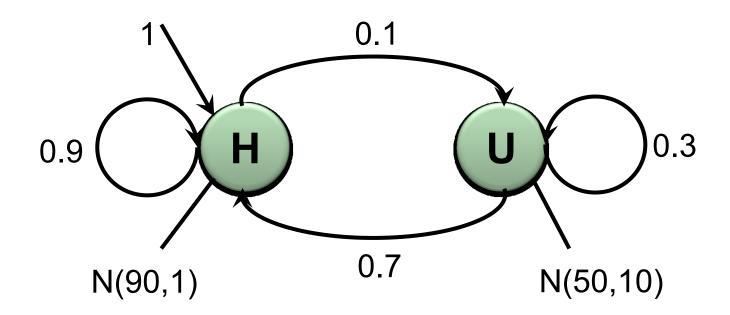
Hidden Markov Models

- Often represented using state transition diagram
- Example for homework grades
- Parameters:
 - Initial state probabilities
 - Transition probabilities
 - Emission probabilities



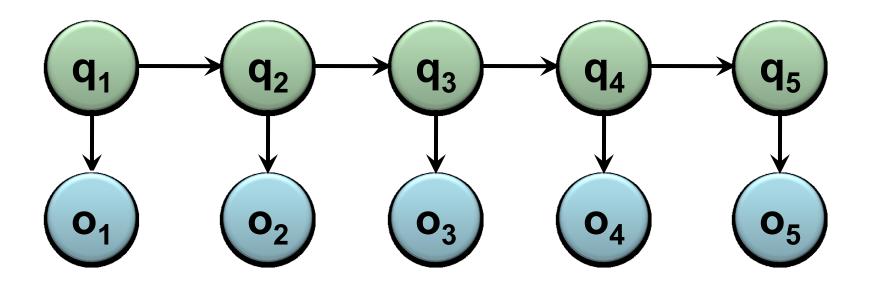
Hidden Markov Models

- Markov assumption allows us to use this compact representation
- What are the nodes in this diagram?
- How many random variables?



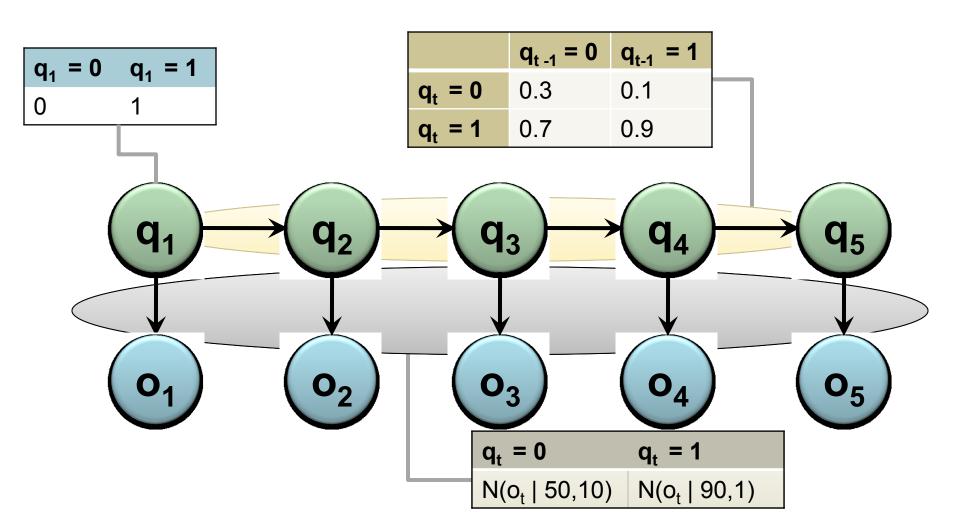
Unrolling HMMs

- We can "unroll" the HMM and explicitly show the variables
- At each of the 5 time points:
 - One binary variable for state (hidden)
 - One continuous variable for output (observed)



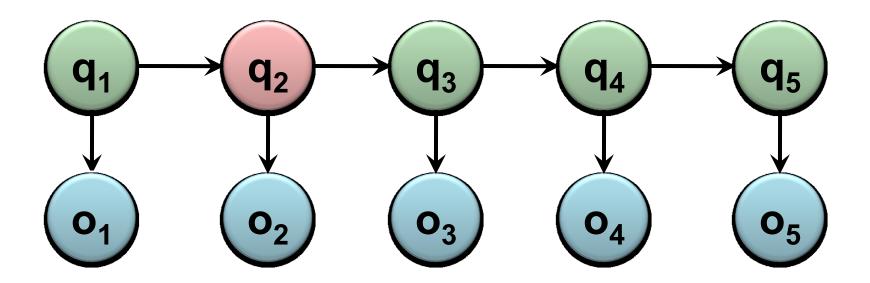
Unrolling HMMs

- We still have shared transition and emission probabilities
- Use q_t = 0 to be state U and q_t = 1 to be state H



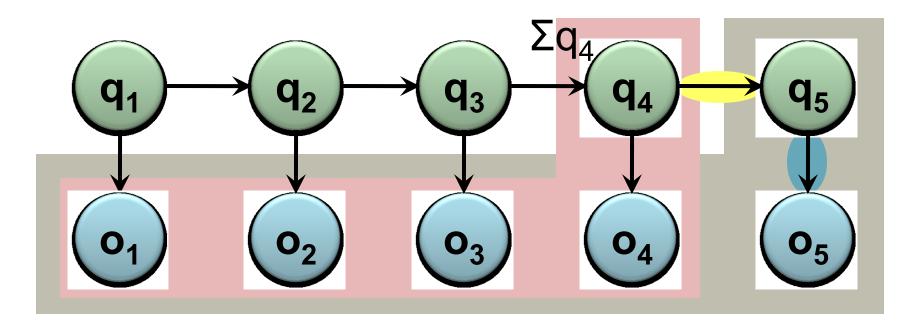
HMM d-separation

- d-separation can be used to read independence assumptions
- $q_3 \perp q_1 \mid q_2$ (Markov assumption)
- $o_5 \not\perp o_3 \mid q_2$
- $o_5 \perp o_1 | q_2$



HMM inference

- May be helpful to think about the terms we defined for HMM inference using this representation
- $\alpha_5(i=1) = P(o_1=81,o_2=97,o_3=92,o_4=44,o_5=88,q_5=1)$ = $\Sigma_k b_1(o_5=88) a_{k,1} \alpha_4(k)$ = $\Sigma_k P(o_5=88|q_5=1)P(q_5=1|q_4=k)P(o_1=81,o_2=97,o_3=92,o_4=44,q_4=k)$

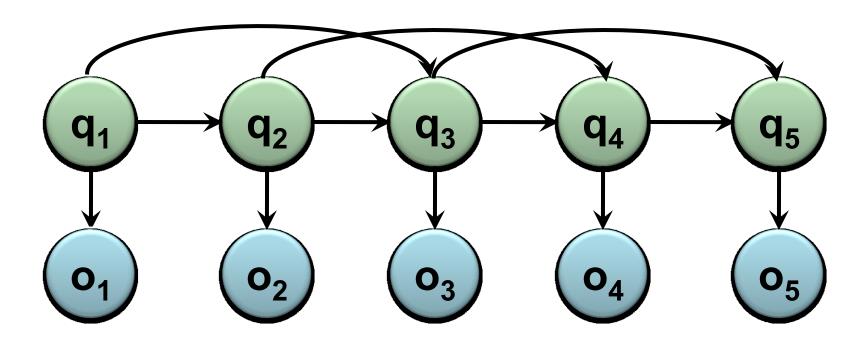


HMM limitations

- In their simplest form HMMs make strong assumptions
 - State only depends on previous state
 - Discrete state variables
 - Output only depends on hidden state
- These assumptions can be helpful
 - Inference is relatively easy
 - Few parameters needed
- Sometimes these assumptions are too restrictive
- High level overviews of how assumptions are relaxed
- Inference and learning can be much more difficult for some of the following extensions

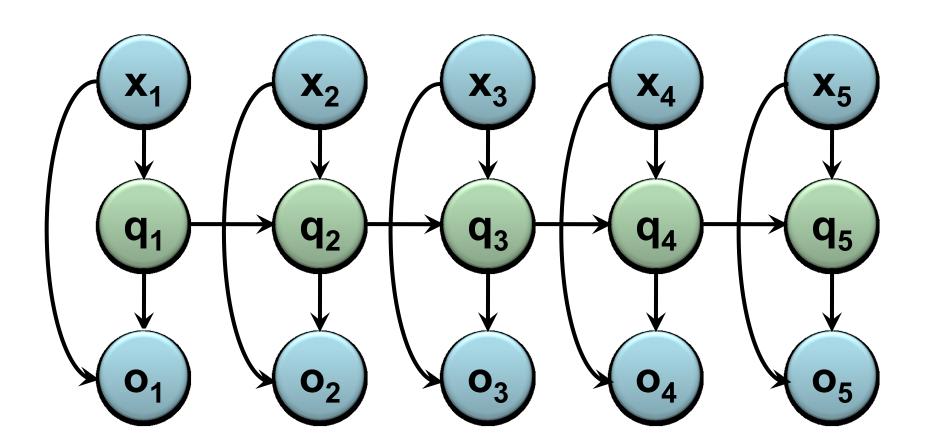
Second order HMMs

- Hidden state depends on the two previous states
- Useful for natural language processing
- Can be extended to nth order HMM
 - State depends on n previous states



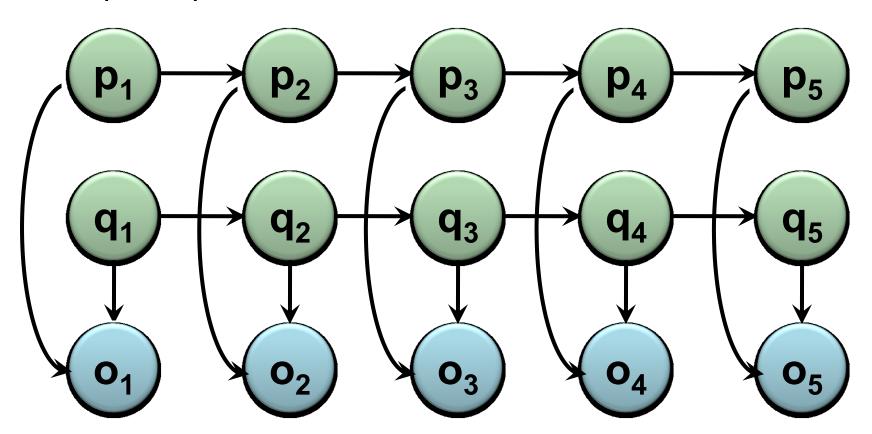
Input-Output HMMs

- Hidden states and output depend on another observed sequence
- Still have q₃ ⊥ q₁ | q₂



Factorial HMMs

- Using a single hidden variable for all hidden states would often lead to huge state space
- Instead use more than one chain of hidden variables
- Output depends on both hidden states

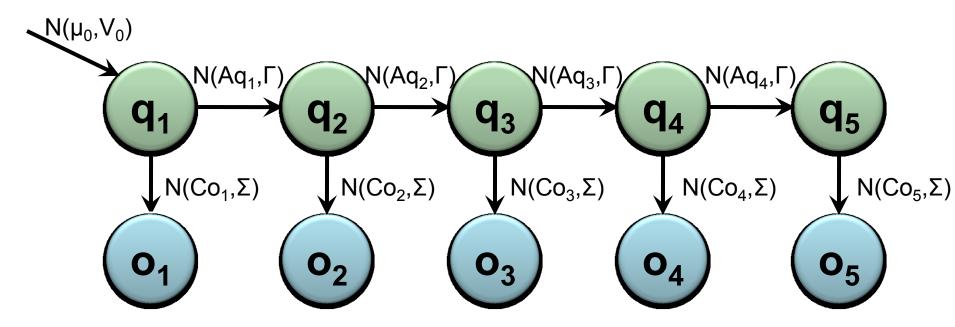


Linear dynamical systems

- Hidden states are multivariate Gaussian distributions
- State q_t is linear function of state q_{t-1} plus noise

$$q_1 = \mu_0 + u$$
 $u \sim N(u \mid 0, V_0)$
 $q_t = Aq_{t-1} + w_t$ $w \sim N(w \mid 0, \Gamma)$
 $o_t = Cq_t + v_t$ $v \sim N(v \mid 0, \Sigma)$

A.k.a. Kalman filters

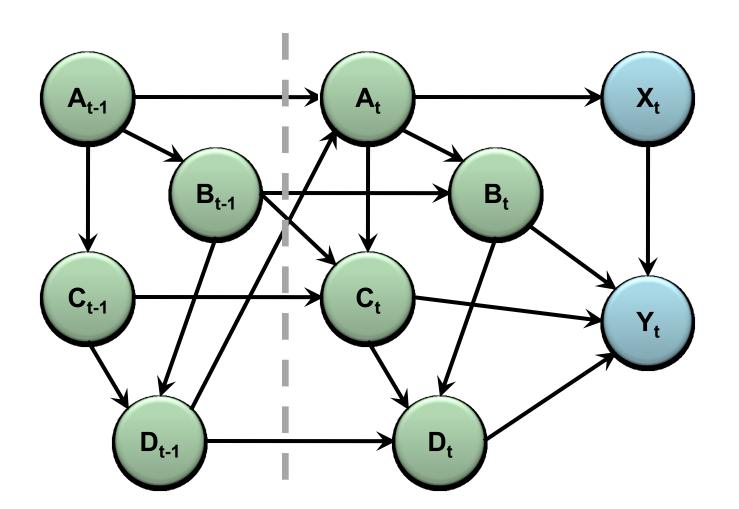


Dynamic Bayesian networks

- All of the previous models are special cases of dynamic Bayesian networks (DBNs)
- At each time point
 - Set of hidden variables
 - Set of observed variables
- Variables can be discrete or continuous
- Two-slice temporal Bayesian network defines the structure and distributions
- Kevin Murphy's DBN tutorial for much more detail

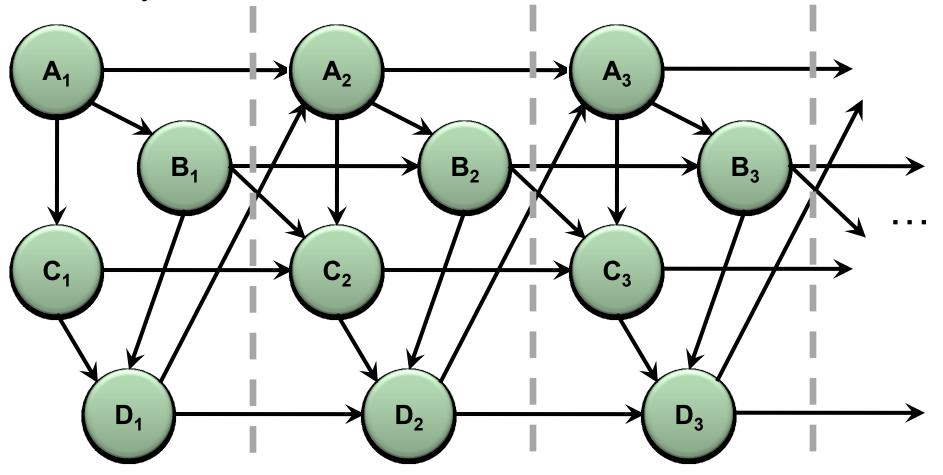
Two-slice temporal Bayesian network

- Hidden variables at time t-1 and t
- Observed variables at time t



Two-slice temporal Bayesian network

- Structure and distributions hold between all consecutive time points
- Only hidden nodes shown here



PS5

 In 5.1 show the state transition diagram not the unrolled probabilistic graphical model

Any questions?