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How will we spend our final recitation?

« HMM review
* Generalizing HMMs
« PS5 questions



Hidden Markov Models

« Often represented using state transition diagram
« Example for homework grades
« Parameters:

— Initial state probabilities

— Transition probabilities

— Emission probabilities
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Hidden Markov Models

Markov assumption allows us to use this compact
representation

What are the nodes in this diagram?
How many random variables?

N(90,1) 0.7 N(50,10)



Unrolling HMMs

« We can “unroll” the HMM and explicitly show the
variables

« At each of the 5 time points:
— One binary variable for state (hidden)
— One continuous variable for output (observed)




Unrolling HMMs

* We still have shared transition and emission probabilities
 Use g, = 0to be state U and g, = 1 to be state H
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HMM d-separation

d-separation can be used to read independence
assumptions

d; 1 94|95 (Markov assumption)
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HMM inference

May be helpful to think about the terms we defined for HMM
inference using this representation

as(i=1) = P(0,=81,0,=97,0;,=92,0,=44,0,=88,95=1)
= 2,/04(05=88) a, 1 a,(Kk)
= 2, P(05=88|9:=1)P(q5s=1|q,=k)P(0,=81,0,=97,0,=92,0,=44,q,=K)

20,




HMM limitations

In their simplest form HMMs make strong assumptions
— State only depends on previous state

— Discrete state variables

— Output only depends on hidden state

These assumptions can be helpful

— Inference is relatively easy

— Few parameters needed

Sometimes these assumptions are too restrictive
High level overviews of how assumptions are relaxed

Inference and learning can be much more difficult for
some of the following extensions



Second order HMMs

« Hidden state depends on the two previous states
« Useful for natural language processing

« (Can be extended to nth order HMM
— State depends on n previous states

) —@)—@
©® ® © @




Input-Output HMMs

* Hidden states and output depend on another observed
sequence

- Stillhave q; | a4 9




Factorial HMMs

« Using a single hidden variable for all hidden states would
often lead to huge state space

 |nstead use more than one chain of hidden variables
* Output depends on both hidden states




Linear dynamical systems

 Hidden states are multivariate Gaussian distributions
« State q, is linear function of state g, , plus noise

gy = Hp T U u~N(u|0,Vy)
i = AQyq + W, w~N(w|O0,l)
=Cq; + v, v~N(v|O0,2)
* A.k.a. Kalman filters
N(Mo, Vo)
N(Co, N(Co,,%) N(Cos,,%) N(Co, N(Cog,Z)



Dynamic Bayesian networks

All of the previous models are special cases of dynamic
Bayesian networks (DBNs)

At each time point
— Set of hidden variables
— Set of observed variables

Variables can be discrete or continuous

Two-slice temporal Bayesian network defines the
structure and distributions

Kevin Murphy’s DBN tutorial for much more detail



Two-slice temporal Bayesian network

 Hidden variables at time t-1 and t
 Observed variables at time t




Two-slice temporal Bayesian network

e Structure and distributions hold between all consecutive
time points

* Only hidden nodes shown here
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PS5

* In 5.1 show the state transition diagram not the unrolled
probabilistic graphical model

* Any questions?



