## Temporal Models

Anthony Gitter
November 15, 2010

## How will we spend our final recitation?

- HMM review
- Generalizing HMMs
- PS5 questions


## Hidden Markov Models

- Often represented using state transition diagram
- Example for homework grades
- Parameters:
- Initial state probabilities
- Transition probabilities
- Emission probabilities



## Hidden Markov Models

- Markov assumption allows us to use this compact representation
- What are the nodes in this diagram?
- How many random variables?



## Unrolling HMMs

- We can "unroll" the HMM and explicitly show the variables
- At each of the 5 time points:
- One binary variable for state (hidden)
- One continuous variable for output (observed)



## Unrolling HMMs

- We still have shared transition and emission probabilities
- Use $q_{t}=0$ to be state $U$ and $q_{t}=1$ to be state $H$

| $\mathbf{q}_{1}=\mathbf{0}$ | $\mathbf{q}_{1}=\mathbf{1}$ |
| :--- | :--- |
| 0 | 1 |


|  | $\mathbf{q}_{\mathbf{t}-1}=\mathbf{0}$ | $\mathbf{q}_{\mathbf{t}-1}=\mathbf{1}$ |
| :--- | :--- | :--- |
| $\mathbf{q}_{\mathbf{t}}=\mathbf{0}$ | 0.3 | 0.1 |
| $\mathbf{q}_{\mathbf{t}}=\mathbf{1}$ | 0.7 | 0.9 |



$$
\begin{array}{ll}
q_{t}=0 & q_{t}=1 \\
N\left(o_{t} \mid 50,10\right) & N\left(o_{t} \mid 90,1\right) \\
\hline
\end{array}
$$

## HMM d-separation

- d-separation can be used to read independence assumptions
- $q_{3} \perp q_{1} \mid q_{2}$
(Markov assumption)
- $o_{5} \npreceq O_{3} \mid q_{2}$
- $\mathrm{o}_{5} \perp \mathrm{o}_{1} \mid \mathrm{q}_{2}$



## HMM inference

- May be helpful to think about the terms we defined for HMM inference using this representation
- $\alpha_{5}(i=1)=P\left(o_{1}=81, o_{2}=97, o_{3}=92, o_{4}=44, o_{5}=88, q_{5}=1\right)$

$$
=\Sigma_{k} b_{1}\left(o_{5}=88\right) a_{k, 1} a_{4}(k)
$$

$$
=\Sigma_{\mathrm{k}} \mathrm{P}\left(\mathrm{o}_{5}=88 \mid \mathrm{q}_{5}=1\right) \mathrm{P}\left(\mathrm{q}_{5}=1 \mid \mathrm{q}_{4}=\mathrm{k}\right) \mathrm{P}\left(\mathrm{o}_{1}=81, \mathrm{o}_{2}=97, \mathrm{o}_{3}=92, \mathrm{o}_{4}=44, \mathrm{q}_{4}=\mathrm{k}\right)
$$



## HMM limitations

- In their simplest form HMMs make strong assumptions
- State only depends on previous state
- Discrete state variables
- Output only depends on hidden state
- These assumptions can be helpful
- Inference is relatively easy
- Few parameters needed
- Sometimes these assumptions are too restrictive
- High level overviews of how assumptions are relaxed
- Inference and learning can be much more difficult for some of the following extensions


## Second order HMMs

- Hidden state depends on the two previous states
- Useful for natural language processing
- Can be extended to nth order HMM
- State depends on n previous states



## Input-Output HMMs

- Hidden states and output depend on another observed sequence
- Still have $q_{3} \perp q_{1} \mid q_{2}$



## Factorial HMMs

- Using a single hidden variable for all hidden states would often lead to huge state space
- Instead use more than one chain of hidden variables
- Output depends on both hidden states



## Linear dynamical systems

- Hidden states are multivariate Gaussian distributions
- State $q_{t}$ is linear function of state $q_{t-1}$ plus noise

$$
\begin{array}{ll}
q_{1}=\mu_{0}+u & u \sim N\left(u \mid 0, v_{0}\right) \\
q_{t}=A q_{t-1}+w_{t} & w \sim N(w \mid 0, \Gamma) \\
o_{t}=C q_{t}+v_{t} & v \sim N(v \mid 0, \Sigma)
\end{array}
$$

- A.k.a. Kalman filters



## Dynamic Bayesian networks

- All of the previous models are special cases of dynamic Bayesian networks (DBNs)
- At each time point
- Set of hidden variables
- Set of observed variables
- Variables can be discrete or continuous
- Two-slice temporal Bayesian network defines the structure and distributions
- Kevin Murphy's DBN tutorial for much more detail


## Two-slice temporal Bayesian network

- Hidden variables at time $\mathrm{t}-1$ and t
- Observed variables at time $t$



## Two-slice temporal Bayesian network

- Structure and distributions hold between all consecutive time points
- Only hidden nodes shown here


## PS5

- In 5.1 show the state transition diagram not the unrolled probabilistic graphical model
- Any questions?

