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Announcements

Problem set 2 is due Wednesday

Please make sure that your submission directories work
because we will not allow code submissions via email

Monday's recitation is on problem set 2 — you can bring
guestions

Problem set 3 will be posted Wednesday and will be due
In 2 weeks (Oct 13, 2010)



Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



Sample Complexity

How many training examples are sufficient to learn
the target concept?

1. If learner proposes instances, as queries to
teacher

e Learner proposes instance x, teacher provides
c()
2. If teacher (who knows ¢) provides training
examples

e teacher provides sequence of examples of form
(2, c(x))
3. If some random process (e.g., nature) proposes
instances

e instance x generated randomly, teacher
provides c(x)



Instances, Hypotheses, and More-General-Than

Instances X

xy= <Sunny, Warm, High, Strong, Cool, Same>
,1:2: <Sunny, Warm, High, Light, Warm, Same>

Hypotheses H
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hlz <Sunny, 7, 7, Strong, 7, 7>
hzz <Sumny, 7, 7,7, 7, 7>

f13: <Sunny, 7, 7, 7, Cool, 7>



Sample Complexity: 3

Given:
e set of instances X
e set of hypotheses H

e set of possible target concepts C C: é —> ZO; ’3
Ce

e training instances generated by a fixed, unknown
probability dlstrlbutlonMr X 5 = P()(>

Learner observes a sequence D of training examples
of form (z,¢(x)), for some target concept ¢ € C

e instances = are drawn from distribution D
e teacher provides target value ¢(zx) for each
Learner must output a hypothesis A estimating c

e h is evaluated by its performance on subsequent
instances drawn according to D

Note: randomly drawn instances, noise-free
classifications



True Error of a Hypothesis

Instance space X P(X)=D

Where ¢
and h disagree

Definition: The true error (denoted
errorp(h)) of hypothesis h with respect to
target concept ¢ and distribution D is the
probability that h will misclassify an instance
drawn at random according to D.

errorp(h) = E% [e(z) # h(x)]



Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(z) # ¢(x) over training instances D

>zeD 0(c(z) # h(x))
D

errorp(h) = :UEB[C(:E) #= h(x)]

‘ 

training
True error of hypothesis h with respect to ¢ examples
e How often h(x) # e(x) over future Instances
drawn at random from P
— Probability
errorp(h) = Prle(z) # h(z)] distribution

P(x)




Two Notions of Error

Can we bound
errorp(h)
Training error of hypothesis h with respect to in terms of
target concept c eT‘TQTD(h)
e How often h(z) # ¢(x) over training instances D ??

>zeD 0(c(z) # h(x))
D

errorp(h) = ;cEIrD[C(x) #= h(x)]

‘ 

training
True error of hypothesis h with respect to ¢ examples
e How often h(x) # e(x) over future Instances
drawn at random from P
— Probability
errorp(h) = Prle(z) # h(z)] distribution

P(x)




> peD 0(c(z) # h(x))

errorp(h) = a:EIrD[C(:E) #= h(x)]

T b

training
examples

B Probabilit
errorp(h) = Py[c(z) # h(x)] distribution

P(x)

Can we bound
errorp(h)

in terms of
errorp(h)

2?

If D was a set of examples drawn from ‘pand independent of h,

then we could use standard statistical confidence intervals to
determine that with 95% probability, errorp(h) lies in the interval:

errorp(h) (1 — errorp(h) )

errorp(h) £ 1.96 -

but D is the training data for h ....




Version Spaces
Target concept is

the (usually
unknown) boolean

A hypothesis h is consistent with a set fn to be learned

training examples D of target concept ¢ if and ¢ X 2 {0,1}
only if h(zx) = ¢(x) for each training example
(z,c(x)) in D.

Consistent(h, D) = (W{x,c(x)) € D) h(zx) = ¢(x)

The version space, V Sy p, with respect to
hypothesis space H and training examples D,
is the subset of hypotheses from H consistent
with all training examples in D.

VSuyp={h € H|Consistent(h,D)}



Exhausting the Version Space

Hypothesis space H

- -
. | error=.3
errar=. r=d

F=.4

L]
. " error=.2
error=.a r=.3

r=.1

(r = training error, error = true error)

Definition: The version space V .Sy p is said
to be e-exhausted with respect to ¢ and D. if
every hypothesis h in V Sy p has true error less
than e with respect to ¢ and D.

(Vh € V Sy p) errorp(h) < e



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D 1s not
e-exhausted (with respect to c¢) is less than

|H|E—EWL



How many examples will e-exhaust the VS?

Theorem: [Haussler, 1988|.

If the hypothesis space H is finite, and D is a
sequence of m > 1 independent random
examples of some target concept ¢, then for
any 0 < e < 1, the probability that the
version space with respect to H and D 1s not
e-exhausted (with respect to c¢) is less than

Any(!) learner
|H|E—Em / that OUTPUTS

a hypothesis

consistent
with all
training
examples
(i.,e.,an h
contained in
VSy,5)

Interesting! This bounds the probability that any
consistent learner will output a hypothesis A with
error(h) > €



What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr[(3h € H)s.t.(erroripqin(h) = O)A(errorirye(h) > €)] < |Hle "

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In[H| 4+ In(1/6))
€
2. If errory,qn(h) = O then with probability at least (1-9):

errorirue(h) < %(In |H| 4+ In(1/6))



Learning Conjunctions of Boolean

Literals
Eg..
How many examples are sufficient to assure with X=«X1,X2,..Xn>
probability at least (1 —4) that Each h € H constrains
every h in V Sy p satisfies errorp(h) < e ?gg;‘, Txclc:r?e't')e 1.0, or

Use our theorem:

In other words, each h

1
m 2 E(]ﬂ [H| +n(1/9)) is a rule such as:

Suppose H contains conjunctions of constraints on If X2=0 and X5=1
up to n boolean attributes (i.e., n boolean literals). Then V=1 else Y=0




Learning Conjunctions of Boolean
Literals

How many examples are sufficient to assure with
probability at least (1 — ) that

every h in V Sy p satisfies errorp(h) < €

Use our theorem:
1
m > —(In[H| +In(1/9))

Suppose H contains conjunctions of constraints on

up to n boolean attributes (i.e., n boolean literals).
Then |H| = 3", and

m > %(hl 3" +1n(1/6))

m > %(nh13 + In(1/4))



Example: H is Conjunction of Boolean Literals

m > 2(In|H| + In(1/8))
Consider classification problem :X->Y: €

* Instances: <X; X, X; X,> where each X; is boolean

« |earned hypotheses are rules of the form:
— IF <X; X, X3 X,>=<0,?,1,?>, THEN Y=1, ELSE Y=0
— l.e., rules constrain any subset of the X

How many training examples m suffice to assure that with probability
at least 0.9, any consistent learner will output a hypothesis with true
error at most 0.057



Example: H is Decision Tree with depth=2

m > 2(In|H| + In(1/8))
Consider classification problem f:X->Y: €
* Instances: <X, ... X;> where each X; is boolean

« learned hypotheses are decision trees of depth 2, using
only two variables -

How many training examples m suffice to assure that with probability
at least 0.9, any consistent learner will output a hypothesis with true
error at most 0.057



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<8<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:

H if for all ¢ € C', distributions D over X, € Holds if L requires

such that 0 < e < 1/2, and § such that only a polynomial
0<d<1/2, number of training

les, and
learner L will with probability at least (14 8) o'0CEE T8

output a hypothesis h € H such that example is polynomial
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




Agnostic Learning

So far, assumed ¢ € H

Agnostic learning setting: don’t assume ¢ € H

e What do we want then?

— The hypothesis h that makes fewest errors on

note ¢ here is training data

the difference e What is sample complexity in this case?

between the

training error \ 1

and true error m 2> @(]ﬂ |H| +1n(1/d))
derived from Hoeffding bounds:

Prlerrorp(h) > errorp(h) + €] < o~ 2me’

/ /

true error  training error degree of overfitting



Additive Hoeffding Bounds — Agnostic Learning

Given m independent coin flips of coin with Pr(heads) = 6
bound the error in the maximum likelihood estimate 4

Prlo >0+ < e 2me

Relevance to agnostic learning: for any single hypothesis h

2
Prlerroryue(h) > erroryrqin(h) + €] < e~ me

But we must consider all hypotheses in H

Pr{(3h € H)errorigye(h) > erroryyqin(h)+e] < |H|e_2r’”"’“€2

So, with probability at least (1-6) every h satisfies
In|H| 4+ In%

2m

errortrue(h) < errortmm(h) + J



General Hoeffding Bounds

 When estimating the mean 6 inside [a,b] from m examples

—2me?
P(|0 — E[0]] > ¢) < 2e(-a)

« When estimating a probability 6 is inside [0,1], so

P(f - B[A)| > &) < 272"

« And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e 2m<



What if H i1s not finite?

e Can’t use our result for finite H

» Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
_» dichotomy of S there exists some hypothesis
every in H consistent with this dichotomy.
FOSS‘ (D(C Instance space X

l‘c\ac\\}




The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-6)?

le., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

Compare to our earlier results based on |H|:

m > 1(In(l/cS) + In |H])



VC dimension: examples

Consider X = <, want to learn c:X->{0,1}
What is VC dimension of o o X

* Open intervals:

H1l: if x > a then y =1 else y = VC(H1)=1

O
H2: if £ > a then y =1 else y =0 VC(H2)=2
1

or, if x > a then y =0 else y

 Closed intervals:
H3: ifa<xz<btheny=1else y=0 VC(H3)=2

H4: ifa<z<btheny=1else y=0 VC(H4)=3
or, ifa<xz<btheny=O0e¢elsey=1



VC dimension: examples

What is VC dimension of lines in a plane?
* Hy={((wy +wx; +Wyx;)>0 > y=1) }

T~



VC dimension: examples

What is VC dimension of

* Hy={((wg +wyx; + wyx;)>0 = y=1) }
— VC(H,)=3

« For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1



For any finite hypothesis space H, can you
give an upper bound on VC(H) in terms of |H| ?
(hint: yes)



More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

 Linear SVM over n continuous features

 Decision trees defined over n boolean features
Fi<X,.X>>Y

« Decision trees of depth 2 defined over n features

« How about 1-nearest neighbor?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (€) correct?

m > ~(41092(2/8) + 8VC(H) loga(13/¢))

How tight is this bound?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (€) correct?

m > 2(41095(2/5) + 8VC(H) loga(13/€))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <e<1/8, and any 0 <9 <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
vVe(o) -1

32¢

1
max |—1og(1/§),
€

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €



Agnostic Learning: VC Bounds
[Schoélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(In VC(H) +1)+1In% 5

m

errorirye(h) < erroryyqin(h)—+ J
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Structural Risk Minimization ..

Which hypothesis space should we choose?
« Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

VC(H)(In VC(H) +1)+1In% 5

m

ETTOTtrue (h) < errortrain(h) + J

* unfortunately a somewhat loose bound...



