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Reading: 

• Mitchell chapter 7

Suggested exercises:

• 7.1, 7.2, 7.5, 7.7



Announcements

• Problem set 2 is due Wednesday

• Please make sure that your submission directories work 

because we will not allow code submissions via email

• Monday's recitation is on problem set 2 – you can bring 

questions

• Problem set 3 will be posted Wednesday and will be due 

in 2 weeks (Oct 13, 2010)







Instances, Hypotheses, and More-General-Than
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if D was a set of examples drawn from    and independent of h, 

then we could use standard statistical confidence intervals to 

determine that with 95% probability,                 lies in the interval: 

but D is the training data for h ….
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Target concept is 
the (usually 
unknown) boolean 
fn to be learned

c: X  {0,1}



true error less





Any(!) learner 
that outputs 
a hypothesis 
consistent 
with all 
training 
examples 
(i.e., an h 
contained in 
VSH,D)



What it means

[Haussler, 1988]: probability that the version space is not -exhausted 

after m training examples is at most

1. How many training examples suffice?

Suppose we want this probability to be at most 

2. If                                 then with probability at least (1-):



E.g.,

X=< X1, X2, ... Xn >

Each h  H constrains 
each Xi to be 1, 0, or 
“don’t care”

In other words, each h 
is a rule such as:

If X2=0 and X5=1

Then Y=1, else Y=0





Example: H is Conjunction of Boolean Literals

Consider classification problem f:XY:

• instances: <X1 X2  X3 X4> where each Xi is boolean

• learned hypotheses are rules of the form:

– IF <X1 X2  X3 X4> = <0,?,1,?> ,  THEN Y=1, ELSE Y=0

– i.e., rules constrain any subset of the Xi

How many training examples m suffice to assure that with probability

at least 0.9, any consistent learner will output a hypothesis with true 

error at most 0.05?



Example: H is Decision Tree with depth=2

Consider classification problem f:XY:

• instances: <X1 … XN> where each Xi is boolean

• learned hypotheses are decision trees of depth 2, using 

only two variables

How many training examples m suffice to assure that with probability

at least 0.9, any consistent learner will output a hypothesis with true 

error at most 0.05?





Sufficient condition: 

Holds if L requires 
only a polynomial 
number of training 
examples, and 
processing per 
example is polynomial



true error training error degree of overfitting

note  here is 
the difference 
between the 
training error 
and true error



Additive Hoeffding Bounds – Agnostic Learning

• Given m independent coin flips of coin with Pr(heads) = 

bound the error in the maximum likelihood estimate

• Relevance to agnostic learning: for any single hypothesis h

• But we must consider all hypotheses in H

• So, with probability at least (1-) every h satisfies



General Hoeffding Bounds

• When estimating the mean  inside [a,b] from m examples

• When estimating a probability  is inside [0,1], so

• And if we’re interested in only one-sided error, then



What if H is not finite?

• Can’t use our result for finite H

• Need some other measure of complexity for H

– Vapnik-Chervonenkis (VC) dimension!





VC(H)=3



Compare to our earlier results based on |H|:

How many randomly drawn examples suffice to -exhaust 

VSH,D with probability at least (1-)? 

ie., to guarantee that any hypothesis that perfectly fits the 

training data is probably (1-) approximately () correct

Sample Complexity based on VC dimension



VC dimension: examples

Consider X = <, want to learn c:X{0,1}

What is VC dimension of

• Open intervals:

• Closed intervals:

x

VC(H1)=1

VC(H2)=2

VC(H3)=2

VC(H4)=3



VC dimension: examples

What is VC dimension of lines in a plane?

• H2 = { ((w0 + w1x1 + w2x2)>0   y=1) }



VC dimension: examples

What is VC dimension of

• H2 = { ((w0 + w1x1 + w2x2)>0   y=1) }

– VC(H2)=3

• For Hn = linear separating hyperplanes in n dimensions, 

VC(Hn)=n+1



For any finite hypothesis space H, can you

give an upper bound on VC(H) in terms of |H| ?

(hint: yes)



More VC Dimension Examples to Think About

• Logistic regression over n continuous features

– Over n boolean features?

• Linear SVM over n continuous features

• Decision trees defined over n boolean features

F: <X1, ... Xn>  Y

• Decision trees of depth 2 defined over n features

• How about 1-nearest neighbor?



How tight is this bound?

How many examples m suffice to assure that any hypothesis that fits the 

training data perfectly is probably (1-) approximately () correct?

Tightness of Bounds on Sample Complexity



How tight is this bound?

How many examples m suffice to assure that any hypothesis that fits the 

training data perfectly is probably (1-) approximately () correct?

Tightness of Bounds on Sample Complexity

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L, 

any 0 <  < 1/8, and any 0 <  < 0.01.  Then there exists a distribution 

and a target concept in C, such that if L observes fewer examples than 

Then with probability at least , L outputs a hypothesis with 



Agnostic Learning: VC Bounds

With probability at least (1-) every h  H satisfies

[Schölkopf and Smola, 2002]



Structural Risk Minimization

Which hypothesis space should we choose? 

• Bias / variance tradeoff

H1H2H3H4

[Vapnik]

SRM: choose H to minimize bound on true error!

* unfortunately a somewhat loose bound...


