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Fighting the bias-variance tradeoff
" J
m Simple (a.k.a. weak) learners are good

e.g., haive Bayes, logistic regression, decision stumps
(or shallow decision trees)

Low variance, don’t usually overfit

m Simple (a.k.a. weak) learners are bad
High bias, can’t solve hard learning problems

m Can we make weak learners always good???
No!!!
But often yes...
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Voting (Ensemble Methods)
"

m Instead of learning a single (weak) classifier, learn many weak classifiers that are
good at different parts of the input space

m Output class: (Weighted) vote of each classifier
Classifiers that are most “sure” will vote with more conviction
Classifiers will be most “sure” about a particular part of the space

On average, do better than single classifier!

m But how do you ??7?
force classifiers to learn about different parts of the input space?

weigh the votes of different classifiers?
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Boosting [Schapire, 1989]
" A

m |dea: given a weak learner, run it multiple times on (reweighted)
training data, then let learned classifiers vote

m On each iteration t;

weight each training example by how incorrectly it was classified
Learn a hypothesis — h,
A strength for this hypothesis — o,

m Final classifier:

m Practically useful
m Theoretically interesting
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Learning from weighted data
" J

m Sometimes not all data points are equal
Some data points are more equal than others
m Consider a weighted dataset

D(i) — weight of i th training example (x',y')
Interpretations:

m ith training example counts as D(i) examples
m If | were to “resample” data, | would get more samples of “heavier” data points

Now, in all calculations, whenever used, i th training example counts as
D(i) “examples”
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Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

e Train weak learner using distribution D;.

e Getweak classifier h; : X — R.

e Choose a; € R.

e Update:

Dy (2) exp(—asyihi(zi))
Zt

Dyt (i) =
where Z; is a normalization factor

m
Zy = > Dy(i) exp(—ay;hi(z;))
=
Output the final classifier: '

T
H(z) = sign (Z c}:tht(m)) :

=1

Figure 1: The boosting algorithm AdaBoost.
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Given: (z1,¥1),.--5 (Tm,Ym) Where z; € X, y; € Y = {-1,+1}
Initialize D (z) = 1/m.
Fort=1,....T:

e Train base learner using distribution D).
e Get base classifier h; : X — R. { 1 — ¢
e Choose oy € R. < Qt = 5 In
e Update: €t
~ Dqi(2) exp(—apy;ihi(z;
Dt+1(3) — f() ( fy't‘a f( 3))

z

et = Piup, i lht(x") # v']

= 3" Dy()o(he() £ v;)

1=1
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
"

Training error of final classifier is bounded by:
1 2 1 Xz
— > 6(H(zy) #y;) < — > exp(—y; f(z;))
m =1 mi=1

Where f(x) = Zatht(az); H(x) = sign(f(x))
t
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" A

Training error of final classifier is bounded by:
1 2 1 X
— > O(H(zy) #y;) < — > exp(—yif(z)) =1] %
m .3 m 3 ;
Where  f(z) = Zatht(w) H(z) = sign(f(=))

Z Dy(3) exp(—azy;he(x;))
=1
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" A

Training error of final classifier is bounded by:
1 2 1
— > 6(H(zy) #y;) < —> exp(—y;if(z) =] %
mi=1 m- ¢
Where f(x) = ) athi(x); H(z) = sign(f(x))
t

If we minimize []; Z,, we minimize our training error

We can tighten this bound greedily, by choosing ¢, and h, on each
iteration to minimize Z;

Zy = i Dy(i) exp(—azy;he(x;))
i—1
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What ¢, to choose for hypothesis h,?

[Schapire, 1989]
" A

We can minimize this bound by choosing ¢, on each iteration to minimize Z,

Zy = i Dy(i) exp(—azy;he(x;))
i—1

For binary target function, this is accomplished by [Freund & Schapire '97]:

1—6,3
- ()

Proof: possible homework problem?
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Strong, weak classifiers
" J

m [f each classifier is (at least slightly) better than random
€ <0.5

m AdaBoost will achieve zero training error (exponentially fast):

m

T
> 0(H(zy) #y) < |12 < exp (2 > (1/2- Gt)2)
t t=1

1
M i=1
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Boosting results — Digit recognition

[Schapire, 1989]

10 100 1000
# rounds

m Boosting often
Robust to overfitting
Test set error decreases even after training error is zero
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Boosting generalization error bound
[Freund & Schapire, 1996]

~ Td
errorirue(H) < erroripqin(H) + O ( )
m

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier
® M — number of training examples
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Boosting generalization error bound
[Freund & Schapire, 1996]

~ Td
errorirue(H) < erroripqin(H) + O ( )
m

m Contradicts: Boosting often
Robust to overfitting
Test set error decreases even after training error Is zero

m Need better analysis tools
we’ll come back to this later in the semester

m T — number of boosting rounds
m d - VC dimension of weak learner, measures complexity of classifier
® M — number of training examples
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Boosting: Experimental Results

[Freund & Schapire, 1996]

Comparison of C4.5, Boosting C4.5, Boosting decision
stumps (depth 1 trees), 27 benchmark datasets

error C4.5

0 5 10 15 20 25 30 0 5 10 15 20 25 30
error boosting stumps error boosting C4.5
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Discrete and Real Adaboost.

on Train (left) and Test (right) data from Irvine repository. [Schapire and Singer, ML 1999]
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Boosting and Logistic Regression
" S

Logistic regression assumes:
1

1+ exp(f(x))
And tries to maximize data likelihood:

n 1

P(DIH) = @'1:_[1 1+ exp(—yif(z;))

P(Y =-1|X) =

Equivalent to minimizing log loss

S In(1 + exp(—gif (z))

1=1
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Boosting and Logistic Regression
"

Logistic regression equivalent to minimizing log loss
Z IN(1 + exp(—y; f(x;)))

1=1

Boosting minimizes similar loss function!!

=3 exp(—yif (2)

Both smooth approximations of 0/1 loss!
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Logistic regression and Boosting
" J

Logistic regression: Boosting:
m Minimize loss fn m Minimize loss fn
Z; IN(1 4+ exp(—y;f(z;))) f: exp(—y; f(z;))
=1
m Define m Define
f(z) = %:wjxj flx) = ;Oétht(x)

where h,(x;) defined

where x; predefined dynamically to fit data
(not a linear classifier)

m Weights o, learned
Incrementally
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What you need to know about Boosting
S

m Combine weak classifiers to obtain very strong classifier
Weak classifier — slightly better than random on training data
Resulting very strong classifier — can eventually provide zero training error
m AdaBoost algorithm
m Boosting v. Logistic Regression
Similar loss functions
Single optimization (LR) v. Incrementally improving classification (B)
m  Most popular application of Boosting:
Boosted decision stumps!
Very simple to implement, very effective classifier
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