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Back to classification

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree



Generative vs. discriminative 

classifiers
• When using generative classifiers we relied on all points 

to learn the generative model

• When using discriminative classifiers we mainly care 

about the boundary 
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Regression for classification

• In some cases we can use linear regression for determining the 

appropriate boundary.

• However, since the output is usually binary or discrete there are 

more efficient regression methods

• Recall that for classification we are interested in the conditional 

probability p(y | x ; ) where  are the parameters of our model

• When using regression  represents the values of our regression 

coefficients (w).



Regression for classification

• Assume we would like to use linear regression to learn the 

parameters for  p(y | x ; )

• Problems?

1

-1

Optimal regression

model

wTx  0  classify as 1

wTx < 0  classify as -1



The sigmoid function

• To classify using regression models 

we replace the linear function with the 

sigmoid function:

• Using the sigmoid we set (for binary 

classification problems)



g(h) 
1

1 eh


p(y | x;)

Always between 0 

and 1
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T x
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p(y 1 | x;) 1 g(wTx) 
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The sigmoid function

• To classify using regression models 

we replace the linear function with the 

sigmoid function:

• Using the sigmoid we set (for binary 

classification problems)



g(h) 
1

1 eh


p(y | x;)

Note that we are 
defining the 

probabilities in terms 
of p(y|x). No need to 
use Bayes rule here!
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Logistic regression vs. Linear 

regression



p(y  0 | x;)  g(wTx) 
1

1 ew
T x



p(y 1 | x;) 1 g(wTx) 
ew

T x
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Determining parameters for logistic 

regression problems
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• So how do we find the parameters?

• Similar to other regression problems 

we look for the MLE for w

• The likelihood of the data given the 

model is:
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Solving logistic regression 

problems



LL(y | x;w)  y i ln(1 g(x i;w)) (1 y i)lng(x i;w)
i1

N



 y i ln
1 g(x i;w)

g(x i;w)
 ln g(x i;w)

i1

N



 y iwT x i  ln(1 ew
T x i )

i1

N



• The likelihood of the data is:

• Taking the log we get: 



L(y | x;w)  (1 g(x i;w))y
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Maximum likelihood estimation





w j

l(w) 


w j

{y iwT x i  ln(1 ew
T x i )}

i1

N



 x j
i {y i  (1 g(x i;w))}

i1

N



 x j
i {y i  p(y i 1 | x;w)}

i1

N



Bad news: No close 

form solution!

Good news: Concave 

function
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Gradient ascent

z=x(y-g(w;x))

w

Slope = z/ w

z

w

• Going in the direction to the slope will lead to a larger z

• But not too much, otherwise we would go beyond the 

optimal w



Gradient descent

z=(f(w)-y)2

w

Slope = z/ w

z

w

• Going in the opposite direction to the slope will lead to 

a smaller z

• But not too much, otherwise we would go beyond the 

optimal w



Gradient ascent for logistic 

regression





w j

l(w)  x j
i {y i  (1 g(x i;w))}

i1

N



We use the gradient to adjust the value of w:

Where  is a (small) constant
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Algorithm for logistic regression

1. Chose 

2. Start with a guess for w

3. For all j set 

4. If no improvement for 

stop. Otherwise go to step 3 



(y i  (1 g(x i;w)))2

i1

n
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Regularization

• Like with other data estimation problems, we may not have enough 

data to learn good models

• One way to overcome this is to ‘regularize’ the model, impose 

additional constraints on the parameters we are fitting.

• For example, lets assume that wi comes from a Guassian 

distribution with mean 0 and variance  (where  is a user defined 

parameter): wi~N(0,)

• In that case we have: 
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Regularization

• If we regularize the parameters we need to take the prior into 

account when computing the posterior for our parameters

• Here we use a Gaussian model for the prior.

• Thus, the  log likelihood changes to :

• And the new update rule (after taking the derivative w.r.t. wi) is:



LL(y;w | x)  y iwTx i  ln(1 ew
T x i )

i1

N

 
w j

2

2
j





w j  w j  x j
i {y i  (1 g(x i;w))}

i1

N

 
w j



After removing 

terms that are not 

dependent on w

The variance of 

our prior modelAlso known as the MAP 

estimate



p(y 1, | x) p(y 1| x;)p()



Regularization

• There are many other ways to regularize logistic regression

• The Gaussian model leads to an L2 regularization (we are trying to 

minimize the square of w)

• Another popular regularization is an L1 which tries to minimize |w|

• This often leads to many wj’s being 0 resulting in compact models



The importance of the 

regularization parameter
• Too small does not have a big impact

• Too large overrides the data 

• An example of the training/test conditional log likelihoods as a 

function of the regularization parameter 

Average log 

likelihood for data 

only



Logistic regression for more 

than 2 classes
• Logistic regression can be used to classify data from more than 2 

classes:

• for i<k we set

where

And for k we have 



p(y  i | x;)  g(wi0 wi1x1  widxd )  g(w i

Tx)



g(zi) 
ezi

1 e
z j

j1

k1


zi  wi0  wi1x1   wid xd



p(y  k | x;) 
1
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j1

k1





p(y  k | x;) 1 p(y  i | x;)
i1

k1

 
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than 2 classes
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where
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
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
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p(y  k | x;) 
1
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k1
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k1

 

Binary logistic regression is a 

special case of this rule



Update rule for logistic 

regression with multiple classes





wm, j
l(w)  x j

i {m (y
i) p(y i  m | x i;w)}

i1

N



Where (yi)=1 if yi=m 

and (yi)=0 otherwise

The update rule becomes:



wm, j  wm, j  x j
i {m(y

i) p(y i  m | x i;w)}
i1

N





Additive models

• Similar to what we did with linear regression we can extend logistic 

regression to other transformations of the data 

• As before, we are free to choose the basis functions



p(y 1| x;w)  g(wi0 w11(x) wdd (x))



Important points

• Advantage of logistic regression over linear regression for 

classification

• Sigmoid function

• Gradient ascent / descent

• Regularization

• Logistic regression for multiple classes



Logistic regression

• The name comes from the logit transformation:



log
p(y  i | x;)

p(y  k | x;)
 log

g(zi)

g(zk)
 wi0  wi1x1   wid xd


