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Types of classifiers

• We can divide the large variety of classification approaches into three major types 

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree
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Choosing a restaurant
Reviews 

(out of 5 

stars)

$ Distance Cuisine 

(out of 10)

4 30 21 7

2 15 12 8

5 27 53 9

3 20 5 6

• In everyday life we need to make decisions 

by taking into account lots of factors

• The question is what weight we put on each 

of these factors (how important are they with 

respect to the others).

• Assume we would like to build a 

recommender system based on an 

individuals‟ preferences

• If we have many observations we may be 

able to recover the weights

?



Linear regression

• Given an input x we would like 

to compute an output y

• For example:

- Predict height from age

- Predict Google‟s price from 

Yahoo‟s price

- Predict distance from wall 

from sensors

X

Y



Linear regression

• Given an input x we would like to 
compute an output y

• In linear regression we assume 
that y and x are related with the 
following equation: 

y = wx+

where w is a parameter and 
represents measurement or 
other noise  

X

Y

What we are 

trying to predict

Observed values



• Our goal is to estimate w from a training 

data of <xi,yi> pairs

• This could be done using a least squares 

approach

• Why least squares?

- minimizes squared distance between 

measurements and predicted line

- has a nice probabilistic interpretation

- easy to compute

Linear regression
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If the noise is Gaussian 

with mean 0 then least 

squares is also the 

maximum likelihood 

estimate of w



Solving linear regression

• You should be familiar with this by now …

• We just take the derivative w.r.t. to w and set to 0:
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Regression example

• Generated: w=2

• Recovered: w=2.03

• Noise: std=1



Regression example

• Generated: w=2

• Recovered: w=2.05

• Noise: std=2



Regression example

• Generated: w=2

• Recovered: w=2.08

• Noise: std=4



Bias term

• So far we assumed that the 

line passes through the origin

• What if the line does not?

• No problem, simply change the 

model to

y = w0 + w1x+

• Can use least squares to 

determine w0 , w1
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Bias term

• So far we assumed that the 

line passes through the origin

• What if the line does not?

• No problem, simply change the 

model to

y = w0 + w1x+

• Can use least squares to 

determine w0 , w1
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Just a second, we will soon 

give a simpler solution



Multivariate regression

• What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for 

the Google prediction task 

• This becomes a multivariate regression problem

• Again, its easy to model:

y = w0 + w1x1+ … + wkxk + 

Google‟s stock price

Yahoo‟s stock price

Microsoft‟s stock price



Multivariate regression

• What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for 

the Google prediction task 

• This becomes a multivariate regression problem

• Again, its easy to model:

y = w0 + w1x1+ … + wkxk + 

Not all functions can be 

approximated using the input 

values directly



y=10+3x1
2-2x2

2+

In some cases we would like to use 

polynomial or other terms based on the 

input data, are these still linear 

regression problems?

Yes. As long as the coefficients are 

linear the equation is still a linear 

regression problem!



Non-Linear basis function

• So far we only used the observed values

• However, linear regression can be applied in the same way to 

functions of these values

• As long as these functions can be directly computed from the 

observed values the parameters are still linear in the data and the 

problem remains a linear regression problem
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Non-Linear basis function

• What type of functions can we use?

• A few common examples:

- Polynomial: j(x) = xj for j=0 … n

- Gaussian: 

- Sigmoid:    



 j (x) 
(x  j )

2 j

2



 j (x) 
1

1 exp(s jx)
Any function of the input 

values can be used. The 

solution for the parameters 

of the regression remains 

the same.



General linear regression 

problem
• Using our new notations for the basis function linear regression can 

be written as

• Where j(x) can be either xj for multivariate regression or one of the 

non linear basis we defined

• Once again we can use „least squares‟ to find the optimal solution.

y  w j j (x)
j 0

n





LMS for the general linear 

regression problem



y  w j j (x)
j 0

n





J(w)  (y i  w j j (x
i)

j

 )
i


2

Our goal is to minimize the following 

loss function:

Moving to vector notations we get:

We take the derivative w.r.t w



J(w)  (y i wT(x i))2

i
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
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(y i wT(x i))2

i

  2 (y i wT(x i))
i

 (x i)T

Equating to 0 we get



2 (y i w T(x i))
i

 (x i)T  0 

y i

i

 (x i)T w T (x i)
i

 (x i)T










w – vector of dimension k+1

(xi) – vector of dimension k+1

yi – a scaler



LMS for general linear regression problem

We take the derivative w.r.t w



J(w)  (y i wT(x i))2
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Define:



 

0(x1) 1(x
1) m (x1)

0(x 2) 1(x
2) m (x 2)

0(x n ) 1(x
n ) m (x n )
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Then deriving w 

we get:



w  (T)1Ty



LMS for general linear regression problem



J(w)  (y i wT(x i))2

i



Deriving w we get:



w  (T)1Ty

n by k+1 matrix

n entries vector
k+1 entries vector

This solution is 

also known as 

„psuedo inverse‟



Example: Polynomial regression



A probabilistic interpretation

Our least squares minimization solution can also be motivated by a 

probabilistic in interpretation of the regression problem:

where…

• the noise signals () are independent

• the noise has a normal distribution with mean 0 and unknown 

variance σ2

Then p(y|w,x) has a normal distribution with

• mean wT(x)

• variance σ2



y wT(x)



A probabilistic interpretation

Our least squares minimization solution can also be 

motivated by a probabilistic in interpretation of the 

regression problem:

Then p(y|w,x) has a normal distribution with

• mean wT(x)

• variance σ2


y wT(x)

The MLE for w in this model 

is the same as the solution 

we derived for least squares 

criteria:



w  (T)1Ty



As the number of training examples increases our 

solution gets “better” 

Errors

n=40

n=60

n=

n=20

Number of training examples

E
rr
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r



• Structural error measures 

the error introduced by the 

limited function class 

(infinite training data): 

where (w*T) are the 

optimal linear regression 

parameters. 

Two types of errors



min
w
E(x,y)~P (y wT(x))2  E(x,y )~P (y w*T

(x))2

Structural error



• Approximation error
measures how close we 
can get to the optimal linear 
predictions with limited 
training data: 

where        are the 
parameter estimates based 
on a small training set 
(therefore themselves 
random variables). 

Two types of error



( ˆ w )
Structural error



E(x,y)~P (w*T
(x) ˆ w T(x))2

Approximation error



Other types of linear regression

• Linear regression is a useful model for many problems 

• However, the parameters we learn for this model are global; they 

are the same regardless of the value of the input x

• Extension to linear regression adjust their parameters based on the 

region of the input we are dealing with



Splines 
• Instead of fitting one function for the entire region, fit a set of 

piecewise (usually cubic) polynomials satisfying continuity and 

smoothness constraints.

• Results in smooth and flexible functions without too many 

parameters

• Need to define the regions in advance (usually uniform)



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3



Splines 
• The polynomials are not independent

• For cubic splines we require that they agree in the border point on 

the value, the values of the first derivative and the value of the 

second derivative

• How many free parameters do we actually have?



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3



Splines 
• Splines sometimes contain additional 

requirements for the first and last 

polynomial (for example, having them 

start at 0)

• Once Splines are fitted to the data they 

can be used to predict new values in the 

same way as regular linear regression, 

though they are limited to the support 

regions for which they have been defined

• Note the range of functions that can be 

displayed with relatively small number of 

polynomials (in the example I am using 

5) 



Locally weighted models

• Splines rely on a fixed region for each polynomial and the weight of 

all points within the region is the same.

• An alternative option is to set the region based on the density of the 

input data and have points closer to the point we are trying to 

estimate have a higher weight



Weighted regression
• For a point x we use weight function x centered at x to assign 

weight to points in x‟s vicinity

• Next we solve the following weighted regression problem

• The solution is the same as our general solution (the weight is 

given for every input)



minw x(x
i)(y

i


i

wT(x i))2

x(x
1)=0.3

x1 x2x

x(x)=0.9

x(x
2)=0.7



Determining the weights

• There are a number of ways to determine the weights

• One options is to use a Gaussian centered at x, such that

2 is a parameter that should be selected by the user



x(x
i) 

1

2


(xx i )2

2 2e

More on these weights when we 

discuss kernels



Important points

• Linear regression

- basic model

- as a function of the input

• Solving linear regression

• Error in linear regression

• Advanced regression models



Lets write the global error in terms of the structural and estimation errors

Error decomposition



E(x,y)~P (y  ˆ w T(x))2  E(x,y )~P ((y w*T
(x)) (w*T

(x) ˆ w T(x))2

)ˆˆ( 10
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Structural error

Approximation error



Error decomposition



E(x,y)~P (y  ˆ w T(x))2  E(x,y )~P ((y w*T
(x)) (w*T

(x) ˆ w T(x))2

 E(x,y )~P (y w*T
(x))2

2E(x,y )~P (y w*T
(x))(w*T

(x) ˆ w T(x))

E(x,y)~P (w*T
(x) ˆ w T(x))2

Must be 0. The estimation error () for the 

optimal parameters (w*) is, by definition, 

decorelated from any linear function of the 

input data.



The expected error of our linear regression function decomposes into the 

sum of structural and approximation errors 

Error is decomposable!



E(x,y)~P (y  ˆ w T(x))2  E(x,y )~P (y w*T
(x))2

E(x,y)~P (w*T
(x) ˆ w T(x))2

Good news: Adding more data can only help in our 

regression problem


