
Regression

10-601

Machine Learning

Types of classifiers

• We can divide the large variety of classification approaches into three major types

1. Instance based classifiers

- Use observation directly (no models)

- e.g. K nearest neighbors

2. Generative:

- build a generative statistical model

- e.g., Bayesian networks

3. Discriminative

- directly estimate a decision rule/boundary

- e.g., decision tree

Where we are

In
p
u
ts

Classifier
Predict

category

In
p
u
ts Density

Estimator

Prob-
ability

In
p
u
ts

Regressor
Predict
real no.

√

Today

√

Choosing a restaurant
Reviews

(out of 5

stars)

$ Distance Cuisine

(out of 10)

4 30 21 7

2 15 12 8

5 27 53 9

3 20 5 6

• In everyday life we need to make decisions

by taking into account lots of factors

• The question is what weight we put on each

of these factors (how important are they with

respect to the others).

• Assume we would like to build a

recommender system based on an

individuals‟ preferences

• If we have many observations we may be

able to recover the weights

?

Linear regression

• Given an input x we would like

to compute an output y

• For example:

- Predict height from age

- Predict Google‟s price from

Yahoo‟s price

- Predict distance from wall

from sensors

X

Y

Linear regression

• Given an input x we would like to
compute an output y

• In linear regression we assume
that y and x are related with the
following equation:

y = wx+

where w is a parameter and 
represents measurement or
other noise

X

Y

What we are

trying to predict

Observed values

• Our goal is to estimate w from a training

data of <xi,yi> pairs

• This could be done using a least squares

approach

• Why least squares?

- minimizes squared distance between

measurements and predicted line

- has a nice probabilistic interpretation

- easy to compute

Linear regression

 
i

iiw wxy 2)(minarg
X

Y  wxy

If the noise is Gaussian

with mean 0 then least

squares is also the

maximum likelihood

estimate of w

Solving linear regression

• You should be familiar with this by now …

• We just take the derivative w.r.t. to w and set to 0:





 
















i

i

i

ii

i i

iii

i

iii

i

iii

i

ii

x

yx

w

wxyx

wxyx

wxyxwxy
w

2

2

2

0)(2

)(2)(

Regression example

• Generated: w=2

• Recovered: w=2.03

• Noise: std=1

Regression example

• Generated: w=2

• Recovered: w=2.05

• Noise: std=2

Regression example

• Generated: w=2

• Recovered: w=2.08

• Noise: std=4

Bias term

• So far we assumed that the

line passes through the origin

• What if the line does not?

• No problem, simply change the

model to

y = w0 + w1x+

• Can use least squares to

determine w0 , w1

n

xwy

w i

ii 


1

0

X

Y

w0



 



i

i

i

ii

x

wyx

w
2

0

1

)(

Bias term

• So far we assumed that the

line passes through the origin

• What if the line does not?

• No problem, simply change the

model to

y = w0 + w1x+

• Can use least squares to

determine w0 , w1

n

xwy

w i

ii 


1

0

X

Y

w0



 



i

i

i

ii

x

wyx

w
2

0

1

)(

Just a second, we will soon

give a simpler solution

Multivariate regression

• What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for

the Google prediction task

• This becomes a multivariate regression problem

• Again, its easy to model:

y = w0 + w1x1+ … + wkxk + 

Google‟s stock price

Yahoo‟s stock price

Microsoft‟s stock price

Multivariate regression

• What if we have several inputs?

- Stock prices for Yahoo, Microsoft and Ebay for

the Google prediction task

• This becomes a multivariate regression problem

• Again, its easy to model:

y = w0 + w1x1+ … + wkxk + 

Not all functions can be

approximated using the input

values directly

y=10+3x1
2-2x2

2+

In some cases we would like to use

polynomial or other terms based on the

input data, are these still linear

regression problems?

Yes. As long as the coefficients are

linear the equation is still a linear

regression problem!

Non-Linear basis function

• So far we only used the observed values

• However, linear regression can be applied in the same way to

functions of these values

• As long as these functions can be directly computed from the

observed values the parameters are still linear in the data and the

problem remains a linear regression problem

 22

110 kk xwxwwy 

Non-Linear basis function

• What type of functions can we use?

• A few common examples:

- Polynomial: j(x) = xj for j=0 … n

- Gaussian:

- Sigmoid:



 j (x) 
(x  j)

2 j

2



 j (x) 
1

1 exp(s jx)
Any function of the input

values can be used. The

solution for the parameters

of the regression remains

the same.

General linear regression

problem
• Using our new notations for the basis function linear regression can

be written as

• Where j(x) can be either xj for multivariate regression or one of the

non linear basis we defined

• Once again we can use „least squares‟ to find the optimal solution.

y  w j j (x)
j 0

n



LMS for the general linear

regression problem



y  w j j (x)
j 0

n





J(w)  (y i  w j j (x
i)

j

)
i


2

Our goal is to minimize the following

loss function:

Moving to vector notations we get:

We take the derivative w.r.t w



J(w)  (y i wT(x i))2

i







w
(y i wT(x i))2

i

  2 (y i wT(x i))
i

 (x i)T

Equating to 0 we get



2 (y i w T(x i))
i

 (x i)T  0 

y i

i

 (x i)T w T (x i)
i

 (x i)T










w – vector of dimension k+1

(xi) – vector of dimension k+1

yi – a scaler

LMS for general linear regression problem

We take the derivative w.r.t w



J(w)  (y i wT(x i))2

i







w
(y i wT(x i))2

i

  2 (y i wT(x i))
i

 (x i)T

Equating to 0 we get



2 (y i w T(x i))
i

 (x i)T  0

y i

i

 (x i)T w T (x i)
i

 (x i)T










Define:



 

0(x1) 1(x
1) m (x1)

0(x 2) 1(x
2) m (x 2)

0(x n) 1(x
n) m (x n)



















Then deriving w

we get:



w  (T)1Ty

LMS for general linear regression problem



J(w)  (y i wT(x i))2

i



Deriving w we get:



w  (T)1Ty

n by k+1 matrix

n entries vector
k+1 entries vector

This solution is

also known as

„psuedo inverse‟

Example: Polynomial regression

A probabilistic interpretation

Our least squares minimization solution can also be motivated by a

probabilistic in interpretation of the regression problem:

where…

• the noise signals () are independent

• the noise has a normal distribution with mean 0 and unknown

variance σ2

Then p(y|w,x) has a normal distribution with

• mean wT(x)

• variance σ2



y wT(x)

A probabilistic interpretation

Our least squares minimization solution can also be

motivated by a probabilistic in interpretation of the

regression problem:

Then p(y|w,x) has a normal distribution with

• mean wT(x)

• variance σ2


y wT(x)

The MLE for w in this model

is the same as the solution

we derived for least squares

criteria:



w  (T)1Ty

As the number of training examples increases our

solution gets “better”

Errors

n=40

n=60

n=

n=20

Number of training examples

E
rr

o
r

• Structural error measures

the error introduced by the

limited function class

(infinite training data):

where (w*T) are the

optimal linear regression

parameters.

Two types of errors



min
w
E(x,y)~P (y wT(x))2  E(x,y)~P (y w*T

(x))2

Structural error

• Approximation error
measures how close we
can get to the optimal linear
predictions with limited
training data:

where are the
parameter estimates based
on a small training set
(therefore themselves
random variables).

Two types of error



(ˆ w)
Structural error



E(x,y)~P (w*T
(x) ˆ w T(x))2

Approximation error

Other types of linear regression

• Linear regression is a useful model for many problems

• However, the parameters we learn for this model are global; they

are the same regardless of the value of the input x

• Extension to linear regression adjust their parameters based on the

region of the input we are dealing with

Splines
• Instead of fitting one function for the entire region, fit a set of

piecewise (usually cubic) polynomials satisfying continuity and

smoothness constraints.

• Results in smooth and flexible functions without too many

parameters

• Need to define the regions in advance (usually uniform)



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3

Splines
• The polynomials are not independent

• For cubic splines we require that they agree in the border point on

the value, the values of the first derivative and the value of the

second derivative

• How many free parameters do we actually have?



y  a1x
3  b1x

2  c1x  d1



y  a2x
3  b2x

2  c2x  d2



y  a3x
3  b3x

2  c3x  d3

Splines
• Splines sometimes contain additional

requirements for the first and last

polynomial (for example, having them

start at 0)

• Once Splines are fitted to the data they

can be used to predict new values in the

same way as regular linear regression,

though they are limited to the support

regions for which they have been defined

• Note the range of functions that can be

displayed with relatively small number of

polynomials (in the example I am using

5)

Locally weighted models

• Splines rely on a fixed region for each polynomial and the weight of

all points within the region is the same.

• An alternative option is to set the region based on the density of the

input data and have points closer to the point we are trying to

estimate have a higher weight

Weighted regression
• For a point x we use weight function x centered at x to assign

weight to points in x‟s vicinity

• Next we solve the following weighted regression problem

• The solution is the same as our general solution (the weight is

given for every input)



minw x(x
i)(y

i


i

wT(x i))2

x(x
1)=0.3

x1 x2x

x(x)=0.9

x(x
2)=0.7

Determining the weights

• There are a number of ways to determine the weights

• One options is to use a Gaussian centered at x, such that

2 is a parameter that should be selected by the user



x(x
i) 

1

2


(xx i)2

2 2e

More on these weights when we

discuss kernels

Important points

• Linear regression

- basic model

- as a function of the input

• Solving linear regression

• Error in linear regression

• Advanced regression models

Lets write the global error in terms of the structural and estimation errors

Error decomposition



E(x,y)~P (y  ˆ w T(x))2  E(x,y)~P ((y w*T
(x)) (w*T

(x) ˆ w T(x))2

)ˆˆ(10

**

10
xwwxww 

Structural error

Approximation error

Error decomposition



E(x,y)~P (y  ˆ w T(x))2  E(x,y)~P ((y w*T
(x)) (w*T

(x) ˆ w T(x))2

 E(x,y)~P (y w*T
(x))2

2E(x,y)~P (y w*T
(x))(w*T

(x) ˆ w T(x))

E(x,y)~P (w*T
(x) ˆ w T(x))2

Must be 0. The estimation error () for the

optimal parameters (w*) is, by definition,

decorelated from any linear function of the

input data.

The expected error of our linear regression function decomposes into the

sum of structural and approximation errors

Error is decomposable!



E(x,y)~P (y  ˆ w T(x))2  E(x,y)~P (y w*T
(x))2

E(x,y)~P (w*T
(x) ˆ w T(x))2

Good news: Adding more data can only help in our

regression problem

