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Computational biology: Sequence alignment
and profile HMMs
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Comparison of Different

Organisms

Genome size Num. of genes
E. coli .05*108 4,200
Yeast .15*108 6,000
Worm 1*108 18,400
Fly 1.8*108 13,600
Human 30*108 25,000
Plant 1.3*108 25,000




Million Sequences

Growth In bi

ological data

Growth of GenBank Growth of Gene Expression Omnibus

12 300,000

10 250,000 /

8 200,000 /

6 8 150,000
Q
g /

4 ¥ 100,000 /

2 50,000 /

0 f I ‘ 0 T T T T T T T T

1990 1992 1994 1996 1998 2000

Year

2000 2001 2002 2003 2004 2005 2006 2007 2008

Year

Lu et al Bioinformatics 2009 5



Assigning function to proteins

* One of the main goals of molecular (and
computational) biology.

« There are 25000 human genes and the vast majority
of their functions is still unknown

« Several ways to determine function

- Direct experiments (knockout, overexpression)
- Interacting partners
- 3D structures

- Sequence homology } Easier



Function from sequence
homology

We have a query gene: ACTGGTGTACCGAT

Given a database containing genes with known
function, our goal is to find similar genes from this
database (possibly in another organism)

When we find such gene we predict the function of
the query gene to be similar to the resulting database
gene

Problems
- How do we determine similarity?



Seguence analysis techniques

« A major area of research within computational
biology.

* Initially, based on deterministic or heuristic alignment
methods

* More recently, based on probabillistic inference
methods



Sequence analysis

« Traditional

- Dynamic programming
* Probabilsitic

- Profile HMMs
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Pairwise sequence alignment

AGCCTT
ACCATT - - =

« We cannot expect the alignments to be perfect.
* Major reasons include insertion, deletion and substitutions.

* We need to allow gaps in the resulting alignment.

AG CATT
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Scoring Alignments

- Alignments can be scored by comparing the resulting
alignment to a background (random) model.

Independent Related
P(X’yll):HquHqu P(X1y|I\/I):]i[pxiyi
[ j i
Score for P.

)

alignment: S= ZS(Xi’ Yi) where: s(a,b) = log(

/ qaqb

Can be computed for each pair
of letters 12



Scoring Alignments

- Alignments can be scored by comparing the resulting
alignment to a background (random) model.

In other words, we are trying to find an alignment
that maximizes the likelihood ratio of the aligned
pair compared to the background model

Score for P..p

alignment: S = ZS(XH Yi) where: s(a,b) = log( )

qa qb
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Computing optimal alignment:
The Needham-Wuncsh algorithm

F(I,))= max <

F(i-1,))+d

A GCCTT

L

~  F(i,J-1)+d

>

— F(O-1,)-1)+s(X;,%)

d is a penalty for
a gap

F(i-1,j-1)

F(i-1,)

F(i.J-1)

F(i.))
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Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

|4 [>|0|0|>
oo |~ |b|N |-
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Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

—F(i-1,j-1)+s(x;,x)

FG,j) = max<  F(-1,)+d

—F(i,j-1)+d
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Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

A G |C cC | T T
0 -1 2 3 4 5 6
—F(i-1,j-1)+s(x;,x) 1 0
0

FG,j) = max<  F(-1,)+d

—F(i,j-1)+d

|4 >|O0[0O]| >
ola|lr|lw|N| kR
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Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

F(»i,) = max <<

—F(i-1,j-1)+s(x;,x)

F(i-1,j)+d

—F(i,j-1)+d

A
0 -1 -6
A -1 1 -4
C -2 0
C -3 -1
A -4 -2
T -5 -3
T -6 -4
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Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

A G C C T T
0 -1 |2 |3 |4 |-5 |[-6
A -1 1 0 -1 (-2 |3 |4
C -2 0 -1 |1 O [-1 |-2
C -3 -1 | -2 |0 2 1 |0
A -4 2 | -3 |-1 |1 0 -1
T -5 3 |4 |-2 |0 2 1
T -6 -4 |5 |-3 [-1 |1 3

19




Example

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume thatd = -1

A e [c Jc [T |71

o |1 |2 |3 4 |5 |6

A l-1]1 o a2 |3 |4
c |2 o [a2]1 o [1 ]2
c |3 la]l=2]0 21 |o
A la 2311 [o [
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Example

Assume a simple model where S(a,b) =1 if a

b and -5 otherwise.

=-1

Also, assume that d
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Running time

« The running time of an alignment algorithms if O(n?)
« This doesn’t sound too bad, or is it?

- The time requirement for doing global sequence
alignment is too high in many cases.

e Consider a database with tens of thousands of
sequences. Looking through all these sequences for
the best alignment Is too time consuming.

* In many cases, a much faster heuristic approach
can achieve equally good results.
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Sequence analysis

 Traditional

- Dynamic programming

 Probabilsitic

- Profile HMMs

23



Protein families

* Proteins can be classified into families (and further
Into sub families etc.)

» A specific family includes proteins with similar high
level functions

* For example:
- Transcription factors
- Receptors
- Etc.

Family assignment is an important first
step towards function prediction

24



Methods for Characterizing a
Protein Family

« Objective: Given a number of related sequences,
encapsulate what they have in common in such a
way that we can recognize other members of the
family.

« Some standard methods for characterization:

— Hidden Markov Models
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Multiple Alignment Process

* Process of aligning three or

more sequences with each ACA---ATG
other

* We can determine such PCAACTATC
alignment by generalizing ACAC--AGC
the algorithm to align two AGA---ATZC
sequences ACCG--ATOC

* Running time exponential in
the number of sequences
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Training a HMM from an
existing alignment

Start with a predetermined number of states MLE
accounting for matches, insertions and deletions. estimates

For each position in the model, assign a column.in

the multiple alignment Tatt/lsnela-t-wery conserve

Emission probabilities are set accordi amino
acid counts in columns.

Transition probabilities are set according to how
many sequences make use of a given delete or
Insert state.
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Remember the simple
example

ACA---[ATQG

TCAACT[ATC i
ACAC--[aac i
AGA---(ATC S - et 3 o EN S
Acde--jaTCc o — — —

Chose six positions in model.

Highlighted area was selected to be modeled by an insert due to
variability.

Can also do neat tricks for picking length of model, such as
model pruning.

28



So... what do we do with a
model?

« Given a query protein:

- Design statistical tests to determine how likely it is
to get this score from a random (gene) sequence

- Use several protein family models for classifying
new proteins, assign protein to most highly scoring
family.
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Choosing the best model:
Aligning sequences to a models

« Compute the likelinood of the best set of states for
this sequence
« We know how to do this: The Viterbi algortthm

* Time: O(N*M)
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Scoring our simple HMM

AN

Cmm.

Gm2

Tmz
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#1-“TGCTAGG ' vrs: #2-"“ACACATC
— HMM:

#1 = Score of -0.97 #2 Score of 6.7 (Log odds)

ACA---ATG
TCAACTATC
ACAC--AGC
AGA---ATC
ACCG--ATC
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Training from unaligned
sequences

« Baum-Welch algorithm

— Start with a model whose length matches the
average length of the sequences and with random
emission and transition probabillities.

— Align all the sequences to the model.

— Use the alignment to alter the emission and
transition probabilities

— Repeat. Continue until the model stops changing
« By-product: It produces a multiple alignment
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Multiple Alignment: Reasons for
differences

Substitutions\A CA---ATG
'ﬁﬁrc TATC

Insertions ACAC--AGC

/A/G/A»———ATC
Deletions ACCG--ATZC
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Designing HMMs: Consensus

(match) states

We first include states to

output the consensus
seguence

A: 0.8
T: 0.2

C: 0.8
G: 0.2

A CA
T CA
A CA
AGA
ACC

a1 |

A: 0.8
C:0.2

TAT

T: 0.8
G: 0.2
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Designing HMMSs: Insertions

We next add states to allow ACA---AT
Insertions TCAACTAT
ACAC--AG

AGA---AT

G--AT

@ ACC
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Designing HMMs: Deletions

Finally we add states with

no output to allow for
deletions

ACA -
TCAA
ACAC
AGA -
ACCAG

T

AT
AT
A G
AT
AT
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Training from unaligned
continued

« Advantages:

— You take full advantage of the expressiveness of
your HMM.

— You might not have a multiple alignment on hand.
« Disadvantages:

— HMM training methods are local optimizers, you
may not get the best alignment or the best model
unless you're very careful.

— Can be alleviated by starting from a logical model
Instead of a random one.
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Summary

« Initial methods for sequence alignment relied on
combinatorial and dynamic programming methods.

« These methods do not generalize well for multiple
sequence alignment and for searching large
databases.

« State of the art methods rely on Al techniques,
primarily variants of HMMs to overcome this problem.
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