10-601 Machine Learning

Computational biology: Sequence alignment and profile HMMs

Central dogma

Central dogma

Comparison of Different Organisms

	Genome size	Num. of genes
E. coli	.05*108	4,200
Yeast	.15*10 ⁸	6,000
Worm	1*10 ⁸	18,400
Fly	1.8*10 ⁸	13,600
Human	30*10 ⁸	25,000
Plant	1.3*108	25,000

Growth in biological data

Growth of GenBank

12 10 8 8 4 2

1994

1996

Year

1998

2000

1990

1992

Growth of Gene Expression Omnibus

Assigning function to proteins

- One of the main goals of molecular (and computational) biology.
- There are 25000 human genes and the vast majority of their functions is still unknown
- Several ways to determine function
 - Direct experiments (knockout, overexpression)
 - Interacting partners
 - 3D structures
 - Sequence homology

Function from sequence homology

- We have a query gene: ACTGGTGTACCGAT
- Given a database containing genes with known function, our goal is to find similar genes from this database (possibly in another organism)
- When we find such gene we predict the function of the query gene to be similar to the resulting database gene
- Problems
 - How do we determine similarity?

Sequence analysis techniques

- A major area of research within computational biology.
- Initially, based on deterministic or heuristic alignment methods
- More recently, based on probabilistic inference methods

Sequence analysis

- Traditional
 - Dynamic programming
- Probabilsitic
 - Profile HMMs

Pairwise sequence alignment

ACATTG

AACATT

AGCCTT AGCATT

Pairwise sequence alignment

AGCCTT ACCATT

- We cannot expect the alignments to be perfect.
- Major reasons include insertion, deletion and substitutions.
- We need to allow gaps in the resulting alignment.

Scoring Alignments

 Alignments can be scored by comparing the resulting alignment to a background (random) model.

Independent

Related

$$P(x, y \mid I) = \prod_{i} q_{x_i} \prod_{j} q_{x_j}$$

$$P(x, y \mid M) = \prod_{i} p_{x_i y_i}$$

Score for alignment:

$$S = \sum_{i} s(x_i, y_i)$$

where:
$$s(a,b) = \log(\frac{p_{a,b}}{q_a q_b})$$

Can be computed for each pair of letters

Scoring Alignments

 Alignments can be scored by comparing the resulting alignment to a background (random) model.

In other words, we are trying to find an alignment that maximizes the likelihood ratio of the aligned pair compared to the background model

$$S = \sum_{i} s(x_i, y_i)$$

where:
$$s(a,b) = \log(\frac{p_{a,b}}{q_a q_b})$$

Computing optimal alignment: The Needham-Wuncsh algorithm

$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i,x_j) \\ F(i-1,j) + d \end{cases}$$

$$F(i,j-1) + d$$

d is a penalty for a gap

F(i-1,j-1)	F(i-1,j)
F(i,j-1)	F(i,j)

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume that d = -1

		Α	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1						
С	-2						
С	-3						
Α	-4						
Т	-5						
Т	-6						

		А	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1					
С	-2						
С	-3						
Α	-4						
Т	-5						
Т	-6						

		А	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1	0				
С	-2	0					
С	-3						
Α	-4						
Т	-5						
Т	-6						

		А	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1	0	-1	-2	-3	-4
С	-2	0	-1				
С	-3	-1					
Α	-4	-2					
Т	-5	-3					
Т	-6	-4					

		Α	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1	0	-1	-2	-3	-4
С	-2	0	-1	1	0	-1	-2
С	-3	-1	-2	0	2	1	0
Α	-4	-2	-3	-1	1	0	-1
Т	-5	-3	-4	-2	0	2	1
Т	-6	-4	-5	-3	-1	1	3

		Α	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1	0	-1	-2	-3	-4
С	-2	0	-1	1	0	-1	-2
С	-3	-1	-2	0	2	1	0
Α	-4	-2	-3	-1	1	0	-1
Т	-5	-3	-4	-2	0	2	1
Т	-6	-4	-5	-3	-1	1	3

Assume a simple model where S(a,b) = 1 if a=b and -5 otherwise.

Also, assume that d = -1

		Α	G	С	С	Т	Т
	0	-1	-2	-3	-4	-5	-6
Α	-1	1_	0	-1	-2	-3	-4
С	-2	0	-1	1	0	-1	-2
С	-3	-1	-2	0	2	1	0
Α	-4	-2	-3	-1	1	0	-1
T	-5	-3	-4	-2	0	2	1
Т	-6	-4	-5	-3	-1	1	3

Running time

- The running time of an alignment algorithms if O(n²)
- This doesn't sound too bad, or is it?
 - The time requirement for doing global sequence alignment is too high in many cases.
 - Consider a database with tens of thousands of sequences. Looking through all these sequences for the best alignment is too time consuming.
 - In many cases, a much faster heuristic approach can achieve equally good results.

Sequence analysis

- Traditional
 - Dynamic programming $\sqrt{}$
- Probabilsitic
 - Profile HMMs

Protein families

- Proteins can be classified into families (and further into sub families etc.)
- A specific family includes proteins with similar high level functions
- For example:
 - Transcription factors
 - Receptors
 - Etc.

Family assignment is an important first step towards function prediction

Methods for Characterizing a Protein Family

- Objective: Given a number of related sequences, encapsulate what they have in common in such a way that we can recognize other members of the family.
- Some standard methods for characterization:
 - Multiple Alignments
 - Regular Expressions
 - Consensus Sequences
 - Hidden Markov Models

Multiple Alignment Process

- Process of aligning three or more sequences with each other
- We can determine such alignment by generalizing the algorithm to align two sequences
- Running time exponential in the number of sequences

```
A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - A T C
A C C G - - A T C
```

Training a HMM from an existing alignment

 Start with a predetermined number of states accounting for matches, insertions and deletions. MLE estimates

- For each position in the model, assign a column in the multiple alignment that is relatively conserved.
- Emission probabilities are set according to amino acid counts in columns.
- Transition probabilities are set according to how many sequences make use of a given delete or insert state.

Remember the simple example

- Chose six positions in model.
- Highlighted area was selected to be modeled by an insert due to variability.
- Can also do neat tricks for picking length of model, such as model pruning.

So... what do we do with a model?

- Given a query protein:
 - Design statistical tests to determine how likely it is to get this score from a random (gene) sequence
 - Use several protein family models for classifying new proteins, assign protein to most highly scoring family.

Choosing the best model: Aligning sequences to a models

- Compute the likelihood of the best set of states for this sequence
- We know how to do this: The Viterbi algorithm
- Time: O(N*M)

Scoring our simple HMM


```
A C A - - - A T G
T C A A C T A T C
A C A C - - A G C
A G A - - - A T C
A C C G - - A T C
```

- #1 "T G C T A G G" vrs: #2 "A C A C A T C"
 - HMM:

#1 = Score of -0.97 #2 Score of 6.7 (Log odds)

Training from unaligned sequences

- Baum-Welch algorithm
 - Start with a model whose length matches the average length of the sequences and with random emission and transition probabilities.
 - Align all the sequences to the model.
 - Use the alignment to alter the emission and transition probabilities
 - Repeat. Continue until the model stops changing
- By-product: It produces a multiple alignment

Multiple Alignment: Reasons for differences

Designing HMMs: Consensus (match) states

We first include states to output the consensus sequence

Designing HMMs: Insertions

We next add states to allow insertions

A C A - - - A T
T C A A C T A T
A C A C - - A G
A G A - - - A T
A C C G - - A T

Designing HMMs: Deletions

Finally we add states with **no** output to allow for deletions

Training from unaligned continued

Advantages:

- You take full advantage of the expressiveness of your HMM.
- You might not have a multiple alignment on hand.
- Disadvantages:
 - HMM training methods are local optimizers, you may not get the best alignment or the best model unless you're very careful.
 - Can be alleviated by starting from a logical model instead of a random one.

Summary

- Initial methods for sequence alignment relied on combinatorial and dynamic programming methods.
- These methods do not generalize well for multiple sequence alignment and for searching large databases.
- State of the art methods rely on AI techniques, primarily variants of HMMs to overcome this problem.