10601 Machine Learning

Semi supervised learning

Can Unlabeled Data improve supervised learning?

Important question! In many cases, unlabeled data is plentiful, labeled data expensive

- Medical outcomes (x=<patient,treatment>, y=outcome)
- Text classification (x=document, y=relevance)
- Customer modeling (x=user actions, y=user intent)

• . . .

When can Unlabeled Data help supervised learning?

Consider setting:

- Set X of instances drawn from unknown distribution P(X)
- Wish to learn target function f: X→ Y (or, P(Y|X))
- Given a set H of possible hypotheses for f

Given:

- iid labeled examples $L = \{\langle x_1, y_1 \rangle \dots \langle x_m, y_m \rangle\}$
- iid unlabeled examples $U = \{x_{m+1}, \dots x_{m+n}\}$

Determine:

$$\widehat{f} \leftarrow \arg\min_{h \in H} \Pr_{x \in P(X)}[h(x) \neq f(x)]$$

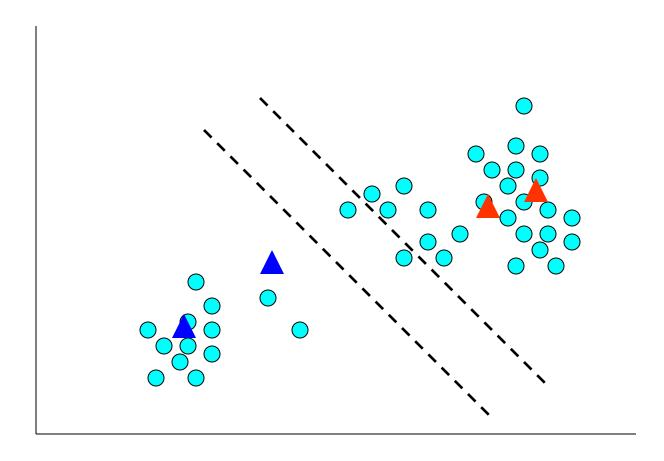
Four Ways to Use Unlabeled Data for Supervised Learning

- 1. Use to re-weight labeled examples
- 2. Use to help EM learn class-specific generative models
- 3. If problem has redundantly sufficient features, use CoTraining.
- 4. Use to detect/preempt overfitting

1. Use unlabeled data to reweight labeled examples

- Most machine learning algorithms (neural nets, decision trees, SVMs) attempt to minimize errors over labeled examples
- But our ultimate goal is to minimize error over future examples drawn from the same underlying distribution
- If we know the underlying distribution, we should weight each training example by its probability according to this distribution
- Unlabeled data allows us to estimate this distribution more accurately, and to reweight our labeled examples accordingly

Example



1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

Wish to find

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

1 if hypothesis

h disagrees

with true

function f,

else 0

1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

Wish to find

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \sum_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L)}{|L|}$$

1 if hypothesis
h disagrees
with true
function f,
else 0

of times we have x in the labeled set

1. reweight labeled examples

Can use $U \to \hat{P}(X)$ to alter optimization problem

Wish to find

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) P(x)$$

Often approximate as

$$\hat{f} \leftarrow \underset{h \in H}{\operatorname{argmin}} \frac{1}{|L|} \sum_{\langle x, y \rangle \in L} \delta(h(x) \neq y)$$

$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L)}{|L|}$$

 \bullet Can use U for improved approximation:

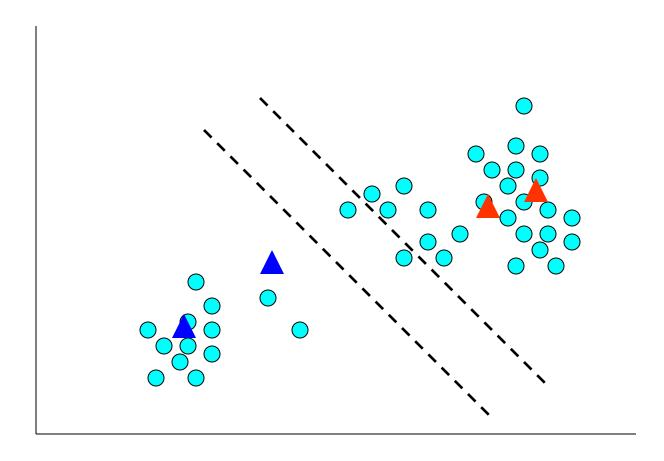
$$\hat{f} \leftarrow \operatorname*{argmin}_{h \in H} \mathop{\textstyle \sum}_{x \in X} \delta(h(x) \neq f(x)) \frac{n(x,L) + n(x,U)}{|L| + |U|}$$

1 if hypothesis
h disagrees
with true
function f,
else 0

of times we have x in the labeled set

of times we have x in the unlabeled set

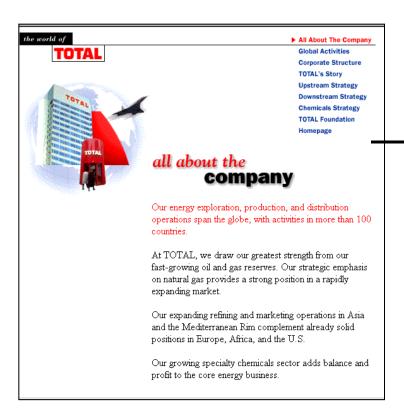
Example



2. Improve EM clustering algorithms

- Consider completely unsupervised clustering, where we assume data X is generated by a mixture of probability distributions, one for each cluster
 - For example, Gaussian mixtures
- Some classifier learning algorithms such as Gaussian Bayes classifiers also assumes the data X is generated by a mixture of distributions, one for each class Y
- Supervised learning: estimate P(X|Y) from labeled data
- Opportunity: estimate P(X|Y) from labeled and unlabeled data, using EM as in clustering

Bag of Words Text Classification



aardvark	0
about	2
all	2
Africa	1
apple	0
anxious	0
•••	
gas	1
oil	1
•••	
Zaire	0

Baseline: Naïve Bayes Learner

Train:

For each class c_j of documents

- 1. Estimate $P(c_j)$
- 2. For each word w_i estimate $P(w_i / c_j)$

Classify (doc):

Assign doc to most probable class

$$\underset{j}{\operatorname{arg max}} P(c_j) \prod_{w_i \in doc} P(w_i \mid c_j)$$

Naïve Bayes assumption: words are conditionally independent, given class

Faculty						
ciate	0.00417					

associate	0.00417
chair	0.00303
member	0.00288
рħ	0.00287
director	0.00282
fax	0.00279
journal	0.00271
recent	0.00260
received	0.00258
award	0.00250

Students

Western				
resume	0.00516			
advisor	0.00456			
student	0.00387			
working	0.00361			
stuff	0.00359			
links	0.00355			
homepage	0.00345			
interests	0.00332			
personal	0.00332			
favorite	0.00310			

Courses

Contre						
0.00413						
0.00399						
0.00388						
0.00385						
0.00381						
0.00374						
0.00371						
0.00370						
0.00364						
0.00355						

Departments

departmental	0.01246
colloquia	0.01076
epartment	0.01045
seminars	0.00997
schedules	0.00879
webmaster	0.00879
events	0.00826
facilities	0.00807
eople	0.00772
postgraduate	0.00764

Doggarch Projecto

Research Projects					
investigators	0.00256				
group	0.00250				
members	0.00242				
researchers	0.00241				
laboratory	0.00238				
develop	0.00201				
related	0.00200				
arpa	0.00187				
affiliated	0.00184				
project	0.00183				

Others

Quen					
type	0.00164				
jan	0.00148				
enter	0.00145				
random	0.00142				
program	0.00136				
net	0.00128				
time	0.00128				
format	0.00124				
access	0.00117				
begin	0.00116				

Expectation Maximization (EM) Algorithm

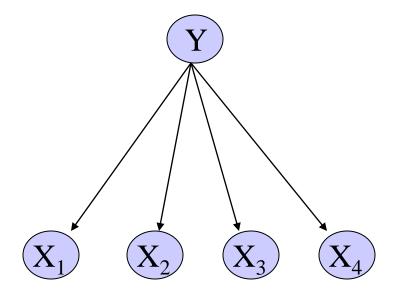
Use labeled data L to learn initial classifier h

Loop:

- E Step:
 - Assign probabilistic labels to *U*, based on *h*
- M Step:
 - Retrain classifier h using both L (with fixed membership) and assigned labels to U (soft membership)
- Under certain conditions, guaranteed to converge to locally maximum likelihood h

2. Generative Bayes model

Learn P(Y|X)



Υ	X1	X2	Х3	X4
1	0	0	1	1
0	0	1	0	0
0	0	0	1	0
?	0	1	1	0
?	0	1	0	1

E Step:

$$\begin{split} \mathbf{P}(y_{i} = c_{j} | d_{i}; \hat{\theta}) &= \frac{\mathbf{P}(c_{j} | \hat{\theta}) \mathbf{P}(d_{i} | c_{j}; \hat{\theta})}{\mathbf{P}(d_{i} | \hat{\theta})} \\ &= \frac{\mathbf{P}(c_{j} | \hat{\theta}) \prod_{k=1}^{|d_{i}|} \mathbf{P}(w_{d_{i,k}} | c_{j}; \hat{\theta})}{\sum_{r=1}^{|\mathcal{C}|} \mathbf{P}(c_{r} | \hat{\theta}) \prod_{k=1}^{|d_{i}|} \mathbf{P}(w_{d_{i,k}} | c_{r}; \hat{\theta})}. \end{split}$$

M Step:

$$\hat{\theta}_{w_t|c_j} \equiv P(w_t|c_j; \hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} N(w_t, d_i) P(y_i = c_j | d_i)}{|V| + \sum_{s=1}^{|V|} \sum_{i=1}^{|\mathcal{D}|} N(w_s, d_i) P(y_i = c_j | d_i)},$$

$$\hat{\theta}_{c_j} \equiv P(c_j|\hat{\theta}) = \frac{1 + \sum_{i=1}^{|\mathcal{D}|} P(y_i = c_j|d_i)}{|\mathcal{C}| + |\mathcal{D}|}.$$

 w_t is t-th word in vocabulary

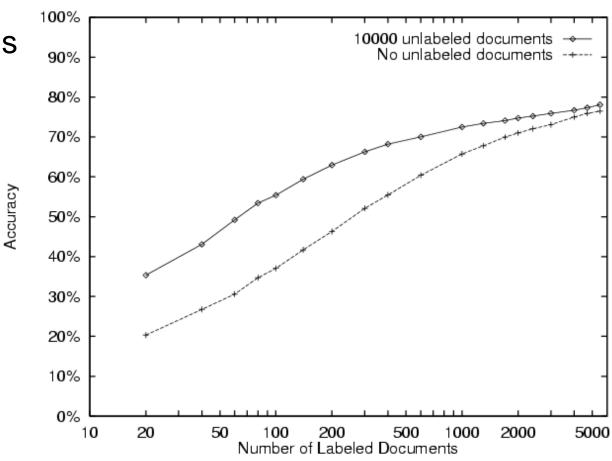
Table 3. Lists of the words most predictive of the course class in the WebKB data set, as they change over iterations of EM for a specific trial. By the second iteration of EM, many common course-related words appear. The symbol D indicates an arbitrary digit.

Iteration 0		Iteration 1	Iteration 2
intelligence		DD	D
DD		D	DD
artificial	Using one	lecture	lecture
understanding	labeled	cc	cc
DDw		D^{\star}	DD:DD
dist	example per	DD:DD	due
identical	•	handout	D^{\star}
rus	class	due	homework
arrange		problem	assignment
games		set	handout
dartmouth		tay	set
natural		DDam	hw
cognitive		yurttas	exam
logic		homework	problem
proving		kfoury	DDam
prolog		sec	postscript
knowledge		postscript	solution
human		exam	quiz
representation		solution	chapter
field		assaf	ascii

Experimental Evaluation

Newsgrop postings

20 newsgroups,1000/group



3. If Problem Setting Provides Redundantly Sufficient Features, use CoTraining

- In some settings, available data features are so redundant that we can train two classifiers using different features
- In this case, the two classifiers should agree on the classification for each unlabeled example
- Therefore, we can use the unlabeled data to constrain training of both classifiers, forcing them to agree

3. CoTraining

```
learn f: X \to Y

where X = X_1 \times X_2

where x drawn from unknown distribution

and \exists g_1, g_2 \ (\forall x) g_1(x_1) = g_2(x_2) = f(x)
```

Redundantly Sufficient Features

<u>Professor Faloutsos</u>

my advisor

U.S. mail address:

Department of Computer Science University of Maryland College Park, MD 20742 (97-99; on leave at CMU)

Office: 3227 A.V. Williams Bldg.

Phone: (301) 405-2695 **Fax:** (301) 405-6707

Email: christos@cs.umd.edu

Christos Faloutsos

Current Position: Assoc. Professor of Computer Science. (97-98: on leave at CMU)

Join Appointment: Institute for Systems Research (ISR).

Academic Degrees: Ph.D. and M.Sc. (University of Toronto.); B.Sc. (Nat. Tech. U. Ath

Research Interests:

- · Query by content in multimedia databases;
- · Fractals for clustering and spatial access methods;
- · Data mining;

CoTraining Algorithm

[Blum&Mitchell, 1998]

Given: labeled data L,

unlabeled data U

Loop:

Train g1 (hyperlink classifier) using L

Train g2 (page classifier) using L

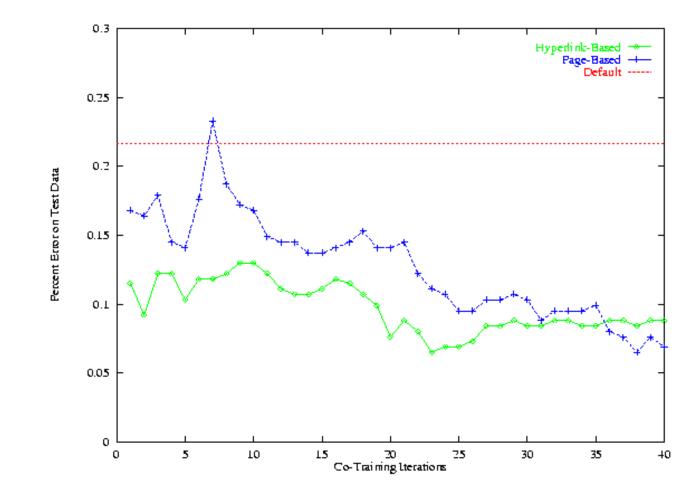
Allow g1 to label p positive, n negative examps from U

Allow g2 to label p positive, n negative examps from U

Add the intersection of the self-labeled examples to L

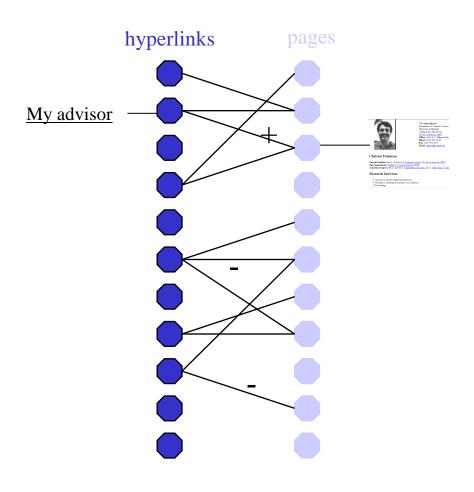
CoTraining: Experimental Results

- begin with 12 labeled web pages (academic course)
- provide 1,000 additional unlabeled web pages
- average error: learning from labeled data 11.1%;
- average error: cotraining 5.0% (when both agree)

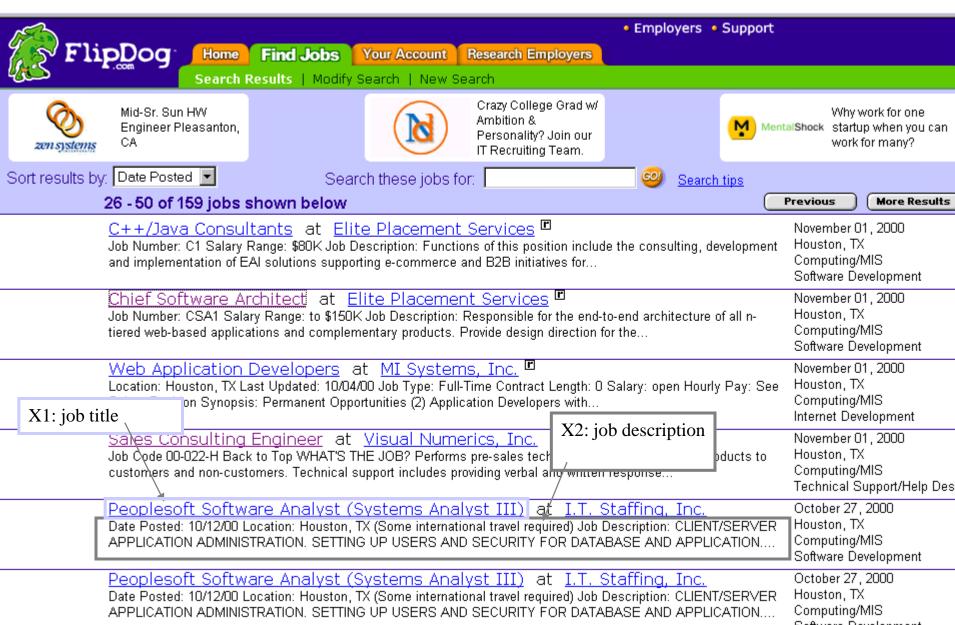


Typical run:

Co-Training Rote Learner



Classifying Jobs for FlipDog



4. Use U to Detect/Preempt Overfitting

- Overfitting is a problem for many learning algorithms (e.g., decision trees, neural networks)
- The symptom of overfitting: complex hypothesis h2 performs better on training data than simpler hypothesis h1, but worse on test data
- Unlabeled data can help detect overfitting, by comparing predictions of h1 and h2 over the unlabeled examples
 - The rate at which h1 and h2 disagree on U should be the same as the rate on L, unless overfitting is occurring

Defining a distance metric

- Definition of distance metric
 - Non-negative $d(f,g) \ge 0$;
 - symmetric d(f,g)=d(g,f);
 - triangle inequality $d(f,g) \cdot d(f,h) + d(h,g)$
- Classification with zero-one loss:

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$

Regression with squared loss:

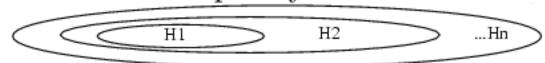
$$d(h_1, h_2) \equiv \sqrt{\int (h_1(x) - h_2(x))^2 p(x) dx}$$

Using the distance metric

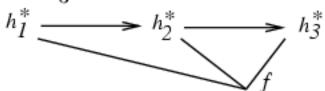
Define metric over $H \cup \{f\}$

$$d(h_1, h_2) \equiv \int \delta(h_1(x) \neq h_2(x)) p(x) dx$$
$$\hat{d}(h_1, f) = \frac{1}{|L|} \sum_{x_i \in L} \delta(h_1(x_i) \neq y_i)$$
$$\hat{d}(h_1, h_2) = \frac{1}{|U|} \sum_{x \in U} \delta(h_1(x) \neq h_2(x))$$

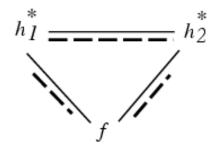
Organize H into complexity classes



Let h_i^* be hypothesis with lowest $\hat{d}(h, f)$ in H_i Prefer h_1^* , h_2^* , or h_3^* ?



Idea: Use U to Avoid Overfitting



Note:

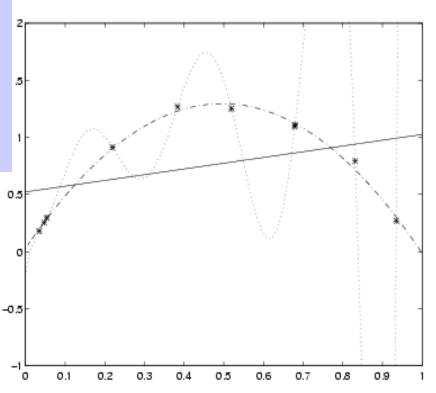
- $\hat{d}(h_i^*, f)$ optimistically biased (too short)
- $\hat{d}(h_i^*, h_i^*)$ unbiased
- Distances must obey triangle inequality!

$$d(h_1, h_2) \le d(h_1, f) + d(f, h_2)$$

\rightarrow Heuristic:

• Continue training until $\hat{d}(h_i, h_{i+1})$ fails to satisfy triangle inequality

Generated y values contain zero mean Gaussian noise ε Y=f(x)+ ε



An example of minimum squared error polynomials of degrees 1, 2, and 9 for a set of 10 training points. The large degree polynomial demonstrates erratic behavior off the training set.

Experimental Evaluation of TRI

[Schuurmans & Southey, MLJ 2002]

- Use it to select degree of polynomial for regression
- Compare to alternatives such as cross validation, structural risk minimization, ...

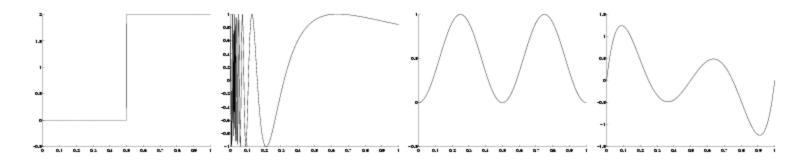


Figure 5: Target functions used in the polynomial curve fitting experiments (in order): $step(x \ge 0.5)$, sin(1/x), $sin^2(2\pi x)$, and a fifth degree polynomial.

Approximation ratio:

true error of selected hypothesis

true error of best hypothesis considered

Results using 200 unlabeled, t labeled

Cross validation (Ten-fold)

Structural risk minimization

	t = 20	TRI	CVT	SRM	RIC	GCV	BIC	AIC	FPE	ADJ
	2ξ	1.00	1.06	1.14	7.54	5.47	15.2	22.2	25.8	1.02
performance	→ 50	1.06	1.17	1.39	224	118	394	585	590	1.12
in top .50 of	7!	5 1.17	1.42	3.62	5.8e3	3.9e3	9.8e3	1.2e4	1.2e4	1.24
trials	95	5 1.44	6.75	56.1	6.1e5	3.7e5	7.8e5	9.2e5	8.2e5	1.54
	100	2.41	1.1e4	2.2e4	1.5e8	6.5e7	1.5e8	1.5e8	8.2e7	3.02

			SRM						
25	1.00	1.08	1.17 1.54 9.68 419	4.69	1.51	5.41	5.45	2.72	1.06
50	1.08	1.17	1.54	34.8	9.19	39.6	40.8	19.1	1.14
75	1.19	1.37	9.68	258	91.3	266	266	159	1.25
95	1.45	6.11	419	4.7e3	2.7e3	4.8e3	5.1e3	4.0e3	1.51
100	2.18	643	1.6e7	1.6e7	1.6e7	1.6e7	1.6e7	1.6e7	2.10

Table 1: Fitting $f(x) = \text{step}(x \ge 0.5)$ with $P_x = U(0, 1)$ and $\sigma = 0.05$. Tables give distribution of approximation ratios achieved at training sample size t = 20 and t = 30, showing percentiles of approximation ratios achieved in 1000 repeated trials.

Summary

Several ways to use unlabeled data in supervised learning

- 1. Use to reweight labeled examples
- 2. Use to help EM learn class-specific generative models
- 3. If problem has redundantly sufficient features, use CoTraining
- 4. Use to detect/preempt overfitting

Ongoing research area

Further Reading

- <u>EM approach</u>: K.Nigam, et al., 2000. "Text Classification from Labeled and Unlabeled Documents using EM", *Machine Learning*, 39, pp.103—134.
- <u>CoTraining</u>: A. Blum and T. Mitchell, 1998. "Combining Labeled and Unlabeled Data with Co-Training," Proceedings of the 11th Annual Conference on Computational Learning Theory (COLT-98).
- S. Dasgupta, et al., "PAC Generalization Bounds for Co-training", NIPS 2001
- Model selection: D. Schuurmans and F. Southey, 2002. "Metric-Based methods for Adaptive Model Selection and Regularizaiton," Machine Learning, 48, 51—84.

Acknowledgment

Some of these slides are based in on slides from Tom Mitchell.