10-601 **Machine Learning**

Markov decision processes (MDPs)

What's missing in HMMs

- HMMs cannot model important aspects of agent interactions:
 - No model for rewards
 - No model for actions which can affect these rewards
- These are actually issues that are faced by many applications:
 - Agents negotiating deals on the web
 - A robot which interacts with its environment

Example: No actions

Formal definition of MDPs

One reward for each state

- A set of states {s₁ ... s_n}
- A set of rewards {r₁ ... r_n}
- A set of actions $\{a_1 ... a_m\}$ Number of actions could be larger than number of states
- Transition probability

$$P_{i,j}^{k} = P(q_{t+1} = s_{i} | q_{t} = i \& h_{t} = a_{k})$$

Questions

- What is my expected pay if I am in state i
- What is my expected pay if I am in state i and perform action a?

Solving MDPs

No actions: Value iteration

With actions: Value iteration, Policy iteration

Value computation

- An obvious question for such models is what is combined expected value for each state
- What can we expect to earn over our life time if we become Asst. prof.?
- What if we go to industry?

Before we answer this question, we need to define a model for future rewards:

- The value of a current award is higher than the value of future awards
 - Inflation, confidence
 - Example: Lottery

Discounted rewards

- The discounted rewards model is specified using a parameter γ
- Total rewards = current reward + $\gamma \text{ (reward at time t+1) +}$ $\gamma^2 \text{ (reward at time t+2) +}$ \dots $\gamma^k \text{ (reward at time t+k) + } \dots$ infinite sum

Discounted rewards

- The discounted rewards model is specified using a parameter γ
- Total rewards = current reward +

 γ (reward at time t+1) +

 v^2 (reward at time t+2) +

Converges if $0 < \gamma < 1 + \dots$

infinite sum

Determining the total rewards in a state

- Define J*(s_i) = expected discounted sum of rewards when starting at state s_i
- How do we compute J*(s_i)?

Factors expected pay for all possible transitions for step *i*

$$J * (s_i) = r_i + \gamma X$$

$$= r_i + \gamma (p_{i1} J * (s_1) + p_{i2} J * (s_2) + \dots + p_{in} J * (s_n))$$

How can we solve this?

Computing $j^*(s_i)$

$$J*(s_1) = r_1 + \gamma(p_{11}J*(s_1) + p_{12}J*(s_2) + \cdots + p_{1n}J*(s_n))$$

$$J*(s_2) = r_2 + \gamma(p_{21}J*(s_1) + p_{22}J*(s_2) + \cdots + p_{2n}J*(s_n))$$

$$J*(s_n) = r_n + \gamma(p_{n1}J*(s_1) + p_{n2}J*(s_2) + \cdots + p_{nn}J*(s_n))$$

- We have n equations with n unknowns
- Can be solved in closed form

Iterative approaches

- Solving in closed form is possible, but may be time consuming.
- It also doesn't generalize to non-linear models
- Alternatively, this problem can be solved in an iterative manner
- Lets define $J^t(s_i)$ as the expected discounted rewards after t steps
- How can we compute $J^t(s_i)$?

$$J^{1}(S_{i}) = r_{i}$$

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{t}(S_{k})\right)$$

Iterative approaches

- We know how to solve this!
- Let's fill the dynamic programming table
- Lets define $J^i(s_i)$ as the expected discounted awards after t steps
- But wait ...

This is a never ending task!

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_i) = r_i + \gamma \left(\sum_k p_{i,k} J^t(S_k)\right)$$

When do we stop?

$$J^{1}(S_{i}) = r_{i}$$

$$J^{2}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{1}(S_{k})\right)$$

$$J^{t+1}(S_{i}) = r_{i} + \gamma \left(\sum_{k} p_{i,k} J^{t}(S_{k})\right)$$

Remember, we have a converging function

We can stop when $|J^{t-1}(s_i)-J^t(s_i)|_{\infty} < \epsilon$

Infinity norm selects maximal element

Example for γ =0.9

Solving MDPs

No actions: Value iteration √

With actions: Value iteration, Policy iteration

Adding actions

A Markov Decision Process:

- A set of states {s₁ ... s_n}
- A set of rewards {r₁ ... r_n}
- A set of actions {a₁ .. a_m}
- Transition probability

$$P_{i,j}^{k} = P(q_{t+1} = s_j \mid q_t = i \& h_t = a_k)$$

Example: Actions

Questions for MDPs

- Now we have actions
- The question changes to the following:

Given our current state and the possible actions, what is the best action for us in terms of long term payment?

Example: Actions

Action A: Leave to Google

Action B: Stay in academia

Policy

- A policy maps states to actions
- An optimal policy leads to the highest expected returns
- Note that this does not depend on the start state

Gr	В
Go	Α
Asst. Pr.	Α
Ten. Pr.	В

Solving MDPs with actions

- It could be shown that for every MDP there exists an optimal policy (we won't discuss the proof).
- Such policy guarantees that there is no other action that is expected to yield a higher payoff

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p^k_{ij} as the probability of transitioning from state i to state j when using action k
- Then we compute:

Use probabilities associated with action k

$$J^{t+1}(S_i) = \max_{k} r_i + \gamma \left(\sum_{j} p_{i,j}^k J^t(s_j) \right)$$

Also known as Bellman's equation

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p^k_{ij} as the probability of transitioning from state i to state j when using action k
- Then we compute:

$$J^{t+1}(S_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^t(s_j) \right)$$

Run until convergence

Computing the optimal policy: 1. Modified value iteration

- We can compute it by modifying the value iteration method we discussed.
- Define p^k_{ij} as the probability of transitioning from state i to state j when using action k
- Then we compute:

$$J^{t+1}(S_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^t(s_j) \right)$$

- When the algorithm converges, we have computed the best outcome for each state
- We associate states with the actions that maximize their return

Value iteration for γ =0.9

Computing the optimal policy: 2. Policy iteration

- We can also compute optimal policies by revising an existing policy.
- We initially select a policy at random (mapping from states to actions).
- We re-compute the expected long term reward at each state using the selected policy
- We select a new policy using the expected rewards and iterate until converges

Policy iteration: algorithm

- Let $\pi_t(s_i)$ be the selected policy at time t
- 1. Randomly chose π_0 ; set t = 0
- 2. For each state s_i compute $J^*(s_i)$, the long term expected reward using policy π_t .
- expected reward using policy π_t . 3. Set $\pi_t(s_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^*(s_j) \right)$
- 4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

Policy iteration: algorithm

- Let $\pi_t(s_i)$ be the selected policy at time t
- 1. Randomly chose π_0 ; set t = 0
- 2. For each state s_i compute $J^*(s_i)$, the long term expected reward using policy π_t .

expected reward using policy
$$\pi_t$$
.

3. Set $\pi_t(s_i) = \max_k r_i + \gamma \left(\sum_j p_{i,j}^k J^*(s_j) \right)$

4. Convergence? Yes: output policy. No: t = t + 1, go to 2.

Can be computed using J*(s_i) for all states

Once the policy is fixed we are back to rewards only models, so this can be computed using value iteration

Value iteration vs. policy iteration

- Depending on the model and the information at hand:
 - If you have a good guess regarding the optimal policy then policy iteration would converge much faster
 - Similarly, if there are many possible actions, policy iteration might be faster
 - Otherwise value iteration is a safer way

Demo

http://www.cs.cmu.edu/~awm/rlsim/

What you should know

- Models that include rewards and actions
- Value iteration for solving MDPs
- Policy iteration

Partially Observed Markov Decision Processes (POMDPs)

- Same model as MDP except we do not observe the states we are in.
- Thus, we have a distribution over states
- There is an initial distribution for states (initial belief)
- Once we reach a new state and receive a reward we can re-compute a new belief regrading the possible set of states

Example

- If we see 1, we can be in any of several locations.
- However, based on past and future observations we can increase a decrease our belief at a given state

1	1	1
3	1	2
1	2	1

POMDPs can be solved by extending the MDP methods to solve for a belief state vector rather than for the original single state MDP