10-601
 Machine Learning

Density estimation

Density Estimation

- A Density Estimator learns a mapping from a set of attributes to a Probability

Density estimation

- Estimate the distribution (or conditional distribution) of a random variable
- Types of variables:
- Binary
coin flip, alarm
- Discrete
dice, car model year
- Continuous
height, weight, temp.,

When do we need to estimate densities?

- Density estimators can do many good things...
- Can sort the records by probability, and thus spot weird records (anomaly detection)
- Can do inference: P(E1|E2)

Medical diagnosis / Robot sensors

- Ingredient for Bayes networks and other types of ML methods

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

Harder (but just a bit): Fit
 a model

Learning a density estimator for discrete variables

$$
\hat{P}\left(x_{i}=u\right)=\frac{\# \text { records in which } x_{i}=u}{\text { total number of records }}
$$

A trivial learning algorithm!

But why is this true?

Maximum Likelihood Principle

We can define the likelihood of the data given the model as follows:
$\hat{P}($ dataset $\mid M)=\hat{P}\left(x_{1} \wedge x_{2} \ldots \wedge x_{n} \mid M\right)=\prod_{k=1}^{n} \hat{P}\left(x_{k} \mid M\right)$
For example M is

- The probability of 'head' for a coin flip
- The probabilities of observing 1,2,3,4 and 5 for a dice
- etc.

Maximum Likelihood Principle $\hat{P}($ dataset $\mid M)=\hat{P}\left(x_{1} \wedge x_{2} \ldots \wedge x_{n} \mid M\right)=\prod_{k=1}^{n} \hat{P}\left(x_{k} \mid M\right)$

- Our goal is to determine the values for the parameters in M
- We can do this by maximizing the probability of generating the observed samples
- For example, let Θ be the probabilities for a coin flip
- Then

$$
L\left(x_{1}, \ldots, x_{n} / \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} / \Theta\right)
$$

- The observations (different flips) are assumed to be independent
- For such a coin flip with $P(H)=q$ the best assignment for Θ_{h} is

$$
\operatorname{argmax}_{q}=\# H / \# s a m p l e s
$$

-Why?

Maximum Likelihood Principle: Binary variables

- For a binary random variable A with $P(A=1)=q$ $\operatorname{argmax}_{\mathrm{q}}=$ \#1/\#samples
- Why?

Data likelihood: $\quad P(D \mid M)=q^{n_{1}}(1-q)^{n_{2}}$
We would like to find: $\quad \arg \max _{q} q^{n_{1}}(1-q)^{n_{2}}$

Maximum Likelihood Principle

Data likelihood: $\quad P(D \mid M)=q^{n}(1-q)^{n_{2}}$
We would like to find: $\arg _{\max }^{q} q^{q^{n}}(1-q)^{n_{2}}$

$$
\begin{aligned}
& \frac{\partial}{\partial q} q^{n_{1}}(1-q)^{n_{2}}=n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1} \\
& \frac{\partial}{\partial q}=0 \Rightarrow \\
& n_{1} q^{n_{1}-1}(1-q)^{n_{2}}-q^{n_{1}} n_{2}(1-q)^{n_{2}-1}=0 \Rightarrow \\
& q^{n_{1}-1}(1-q)^{n_{2}-1}\left(n_{1}(1-q)-q n_{2}\right)=0 \Rightarrow \\
& n_{1}(1-q)-q n_{2}=0 \Rightarrow \\
& n_{1}=n_{1} q+n_{2} q \Rightarrow \\
& q=\frac{n_{1}}{n_{1}+n_{2}}
\end{aligned}
$$

Log Probabilities

When working with products, probabilities of entire datasets often get too small. A possible solution is to use the log of probabilities, often termed 'log likelihood'

$$
\log \hat{P}(\text { dataset } \mid M)=\log \prod_{k=1}^{n} \hat{P}\left(x_{k} \mid M\right)=\sum_{k=1}^{n} \log \hat{P}\left(x_{k} \mid M\right)
$$

Maximizing this likelihood function is the same as maximizing P (dataset | M)

Log values between 0 and 1

Density estimation

- Binary and discrete variables:

Easy: Just count!

- Continuous variables:

The danger of joint density estimation

$P($ summer \& size >20 \& evaluation $=3)=$ 0

- No such example in our dataset

Now lets assume we are given a new (often called 'test') dataset. If this dataset contains the line

Summer	Size	Evaluation
1	30	3

Then the probability we would

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	3
1	20	1

Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.
We need something which generalizes more usefully.

The naïve model generalizes strongly:
Assume that each attribute is distributed independently of any

If two variables are independent then
$p(A, B)=p(A) p(B)$

Joint estimation, revisited

Assuming independence we can compute each probability independently
$\mathrm{P}($ Summer $)=0.5$
$\mathrm{P}($ Evaluation $=1)=0.33$
$P($ Size $>20)=0.66$
Not bad!

How do we do on the joint?
$P($ Summer \& Evaluation $=1)=0.16$
$P($ Summer $) P($ Evaluation $=1)=0.16$

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	2
1	21	1

$P($ size >20 \& Evaluation $=1)=0.33$
$\mathrm{P}($ size $>20) \mathrm{P}($ Evaluation $=1)=0.22$

Joint estimation, revisited

Assuming independence we can compute each probability independently

P (Summer) $=0.5$
$P($ Evaluation $=3)=0.33$
$P($ Size $>20)=0.66$

How do we do on the joint?
$\mathrm{P}($ Summer \& Eval $=3)=0.33$
$\mathrm{P}($ Summer $) \mathrm{P}($ Eval $=3)=0.16$

Summer?	Size	Evaluation
1	19	3
1	17	3
0	49	2
0	33	1
0	55	2
1	21	1

We must be careful when using the Naïve density estimator

Contrast

Joint DE	Naïve DE
Can model anything	Can model only very boring distributions
No problem to model "C is a noisy copy of A"	Outside Naïve's scope
Given 100 records and more than 6 Boolean attributes will screw up badly	Given 100 records and 10,000 multivalued attributes will be fine

Dealing with small datasets

- We just discussed one possibility: Naïve estimation
- There is another way to deal with small number of measurements that is often used in practice.
- Assume we want to compute the probability of heads in a coin flip
- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails

Pseudo counts

- What if we can only observe 3 flips?
- 25% of the times a maximum likelihood estimator will assign probability of 1 to either the heads or tails
- In these cases we can use prior belief about the 'fairness' of most coins to influence the resulting model.
- We assume that we have observed 10 flips with 5 tails and 5 heads
- \quad Thus $p($ heads $)=(\#$ heads +5$) /(\# f l i p s+10)$
- Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real distribution (the impact of the pseudo counts will diminish rapidly)

Pseudo counts

- What if we can only observe 3 flips?
-25% of the times a maximum likelihood estimator will assign probability of 1 to either the he
- In thes 'fairnes
nodel.
Some distributions (for example, the Beta distribution) can incorporate pseudo counts as part of the model

Thus F

- Advan nt

2. As mi eal distribution (the impact of the pseudo counts will diminish rapidly)

Beta distribution

- The beta distribution provides an easy way to incorporate prior knowledge in the form of pseudo-counts
$p(\Theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \Theta^{\alpha-1}(1-\Theta)^{\beta-1}$
- Where Γ is defined (for discrete values of x):
$\Gamma(\mathrm{x}+1)=\mathrm{x} \Gamma(\mathrm{x})=\mathrm{x}$!

Beta distribution

$$
p(\Theta ; \alpha, \beta)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \Theta^{\alpha-1}(1-\Theta)^{\beta-1}
$$

Assume we observed n coin flips of which n 1 are heads and n 2 are tails then the likelihood of Θ is:

$$
\begin{aligned}
& P\left(\Theta \mid x_{1} \ldots x_{n}\right)=\frac{P\left(x_{1} \ldots x_{n} \mid \Theta\right) P(\Theta)}{P\left(x_{1} \ldots x_{n}\right)} \propto \Theta^{n 1}(1-\Theta)^{n 2} \Theta^{\alpha-1}(1-\Theta)^{\beta-1} \\
& =\Theta^{n 1+\alpha-1}(1-\Theta)^{n 2+\beta-1}=P(\Theta ; \alpha+n 1, \beta+n 2)
\end{aligned}
$$

-Note the similarity of the posterior to the prior

- Such priors are termed conjugate priors
$-\alpha$ and β are termed hyperparameters (parameters of the prior) and correspond to the number of pseudo counts from each class

Density estimation

- Binary and discrete variables:

Easy: Just count!
 $\sqrt{ }$

- Continuous variables:

Harder (but just a bit): Fit
 a model

How much do grad students sleep?

- Lets try to estimate the distribution of the time students spend sleeping (outside class).

Possible statistics

- X

Sleep time
-Mean of X :
$E\{X\}$
7.03

- Variance of X :
$\operatorname{Var}\{X\}=E\left\{(X-E\{X\})^{\wedge} 2\right\}$ 3.05

Covariance: Sleep vs. GPA

-Co-Variance of X1, X2:
Covariance $\{X 1, X 2\}=$ $E\{(X 1-E\{X 1\})(X 2-E\{X 2\})\}$
$=0.88$

Statistical Models

- Statistical models attempt to characterize properties of the population of interest
- For example, we might believe that repeated measurements follow a normal (Gaussian) distribution with some mean μ and variance $\sigma^{2}, x \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$
where

$$
p(x \mid \Theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

and $\Theta=\left(\mu, \sigma^{2}\right)$ defines the parameters (mean and variance) of the model.

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

The Parameters of Our Model

- A statistical model is a collection of distributions; the parameters specify individual distributions $\mathrm{x} \sim \mathrm{N}\left(\mu, \sigma^{2}\right)$
- We need to adjust the parameters so that the resulting distribution fits the data well

Computing the parameters of our model

- Lets assume a Guassian distribution for our sleep data
- How do we compute the parameters of the model?

Maximum Likelihood Principle

- We can fit statistical models by maximizing the probability of generating the observed samples:
$L\left(x_{1}, \ldots, x_{n} \mid \Theta\right)=p\left(x_{1} \mid \Theta\right) \ldots p\left(x_{n} \mid \Theta\right)$
(the samples are assumed to be independent)
- In the Gaussian case we simply set the mean and the variance to the sample mean and the sample variance:

$$
\bar{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \overline{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{\mu}^{2}\right.
$$

Why?

Important points

- Maximum likelihood estimations (MLE)
- Pseudo counts
- Types of distributions
- Handling continuous variables

