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Density Estimation

• A Density Estimator learns a mapping from a set of 

attributes to a Probability

Density
Estimator

Probability
Input data for a 

variable or a set of 
variables



Density estimation

• Estimate the distribution (or conditional distribution) of a 

random variable

• Types of variables:

- Binary

coin flip, alarm

- Discrete

dice, car model year

- Continuous 

height, weight, temp.,



When do we need to estimate 

densities? 

• Density estimators can do many good things…

– Can sort the records by probability, and thus spot 

weird records (anomaly detection)

– Can do inference: P(E1|E2)

Medical diagnosis / Robot sensors 

– Ingredient for Bayes networks and other types of ML 

methods



Density estimation

• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit 

a model



Learning a density estimator for 

discrete variables



ˆ P (xi  u) 
#records in which xi  u 

total number of records

A trivial learning algorithm!

But why is this true?



Maximum Likelihood Principle

M is our model (usually a 

collection of parameters)



ˆ P (dataset | M)  ˆ P (x1 x2  xn | M)  ˆ P (xk | M)
k1

n



We can define the likelihood of the data given the model as 

follows:

For example M is

- The probability of „head‟ for a coin flip

- The probabilities of observing 1,2,3,4 and 5 for a dice

- etc.



Maximum Likelihood Principle

• Our goal is to determine the values for the parameters in M

• We can do this by maximizing the probability of generating the observed 

samples

• For example, let  be the probabilities for a coin flip

• Then

L(x1, … ,xn | ) = p(x1 | ) … p(xn  | )

• The observations (different flips) are assumed to be independent

• For such a coin flip with P(H)=q the best assignment for h is

argmaxq = #H/#samples

• Why?



ˆ P (dataset | M)  ˆ P (x1 x2  xn | M)  ˆ P (xk | M)
k1

n





• For a binary random variable A with P(A=1)=q

argmaxq = #1/#samples

• Why?

Data likelihood:

We would like to find:

Maximum Likelihood Principle: 

Binary variables

21 )1()|(
nn

qqMDP 

21 )1(maxarg
nn

q qq 



Data likelihood:

We would like to find:
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Log Probabilities
When working with products, probabilities of entire datasets often 

get too small. A possible solution is to use the log of probabilities, 

often termed „log likelihood‟



log ˆ P (dataset | M)  log ˆ P (xk | M)
k1

n

  log ˆ P (xk | M)
k1

n



Log values 

between 0 and 1

Maximizing this likelihood function is the 

same as maximizing P(dataset | M)

In some cases moving to log space would 

also make computation easier (for 

example, removing the exponents)



Density estimation

• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit 

a model

But what if we 

only have very 

few samples?



The danger of joint density 

estimation

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 3

1 20 1

P(summer & size > 20 & evaluation = 3) = 

0

- No such example in our dataset

Now lets assume we are given a 

new (often called „test‟) dataset. If 

this dataset contains the line

Summer Size Evaluation                 

1 30 3

Then the probability we would 

assign to the entire dataset is 0



Naïve Density Estimation

The problem with the Joint Estimator is that it just mirrors the training data.

We need something which generalizes more usefully.

The naïve model generalizes strongly:

Assume that each attribute is distributed independently of any 

of the other attributes.

If two variables are independent then 

p(A,B) = p(A)p(B)



Joint estimation, revisited

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 2

1 21 1

Assuming independence we can 

compute each probability independently

P(Summer) = 0.5

P(Evaluation = 1) = 0.33

P(Size > 20) = 0.66

How do we do on the joint?

P(Summer & Evaluation = 1) = 0.16

P(Summer)P(Evaluation = 1) = 0.16

P(size > 20 & Evaluation = 1) = 0.33

P(size > 20)P(Evaluation = 1) = 0.22

Not bad !



Joint estimation, revisited

Summer? Size Evaluation

1 19 3

1 17 3

0 49 2

0 33 1

0 55 2

1 21 1

Assuming independence we can 

compute each probability independently

P(Summer) = 0.5

P(Evaluation = 3) = 0.33

P(Size > 20) = 0.66

How do we do on the joint?

P(Summer & Eval = 3) = 0.33

P(Summer)P(Eval = 3) = 0.16

We must be careful when using the Naïve 

density estimator



Contrast
Joint DE Naïve DE

Can model anything Can model only very boring 

distributions

No problem to model “C is a noisy 

copy of A”

Outside Naïve‟s scope

Given 100 records and more than 6 

Boolean attributes will screw up 

badly

Given 100 records and 10,000 

multivalued attributes will be fine



Dealing with small datasets

• We just discussed one possibility: Naïve estimation

• There is another way to deal with small number of 

measurements that is often used in practice.

• Assume we want to compute the probability of heads in a 

coin flip

- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will 

assign probability of 1 to either the heads or tails 



Pseudo counts
- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to 

either the heads or tails 

• In these cases we can use prior belief about the 

„fairness‟ of most coins to influence the resulting model. 

• We assume that we have observed 10 flips with 5 tails 

and 5 heads

• Thus p(heads) = (#heads+5)/(#flips+10)

• Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real 

distribution (the impact of the pseudo counts will diminish rapidly)



Pseudo counts
- What if we can only observe 3 flips?

- 25% of the times a maximum likelihood estimator will assign probability of 1 to 

either the heads or tails 

• In these cases we can use prior belief about the 

„fairness‟ of most coins to influence the resulting model. 

• We assume that we have observed 10 flips with 5 tails 

and 5 heads

• Thus p(heads) = (#heads+5)/(#flips+10)

• Advantages: 1. Never assign a probability of 0 to an event

2. As more data accumulates we can get very close to the real 

distribution (the impact of the pseudo counts will diminish rapidly)

Some distributions (for example, the 

Beta distribution) can incorporate 

pseudo counts as part of the model



Beta distribution

• The beta distribution 

provides an easy way to 

incorporate prior 

knowledge in the form of 

pseudo-counts 

• Where  is defined (for 

discrete values of x):

(x+1) = x(x) = x!

p(;,) 
(  )
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Beta distribution



p(;,) 
(  )

()()
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P( | x1...xn ) 
P(x1...xn |)P()

P(x1...xn )
n1(1)n21(1)1

n11(1)n21  P(;  n1,  n2)

Assume we observed n coin flips of which n1 are heads and n2 

are tails then the likelihood of  is:

-Note the similarity of the posterior to the prior

- Such priors are termed conjugate priors

-  and  are termed hyperparameters (parameters of the prior) and 

correspond to the number of pseudo counts from each class 



Density estimation

• Binary and discrete variables: 

• Continuous variables:

Easy: Just count!

Harder (but just a bit): Fit 

a model





How much do grad students sleep?

• Lets try to estimate the distribution of the time students 

spend sleeping (outside class).



Possible statistics

• X 

Sleep time

•Mean of X:

E{X}

7.03

• Variance of X: 

Var{X} = E{(X-E{X})^2}
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Covariance: Sleep vs. GPA

Sleep / GPA
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•Co-Variance of X1, 

X2: 

Covariance{X1,X2} = 

E{(X1-E{X1})(X2-E{X2})}

= 0.88



Statistical Models

• Statistical models attempt to characterize properties of the 

population of interest

• For example, we might believe that repeated measurements 

follow a normal (Gaussian) distribution with some mean µ and 

variance 2 , x ~ N(µ,2)

where

and =(µ,2) defines the parameters (mean and variance) of the 

model. 
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• A statistical model is a 

collection of distributions; the 

parameters specify individual 

distributions x ~ N(µ,2)

• We need to adjust the 

parameters so that the resulting 

distribution fits the data well

The Parameters of Our Model
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• We need to adjust the 
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distribution fits the data well

The Parameters of Our Model



Computing the parameters of our 

model

• Lets assume a Guassian 

distribution for our sleep 

data

• How do we compute the 

parameters of the model?
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Maximum Likelihood Principle
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• We can fit statistical models by maximizing the probability of 

generating the observed samples:

L(x1, … ,xn | ) = p(x1 | ) … p(xn  | )

(the samples are assumed to be independent)

• In the Gaussian case we simply set the mean and the 

variance to the sample mean and the sample variance:
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Why?



Important points

• Maximum likelihood estimations (MLE)

• Pseudo counts

• Types of distributions

• Handling continuous variables


