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• Organizing data into clusters

such that there is

• high intra-cluster similarity

• low inter-cluster similarity

•Informally, finding natural 

groupings among objects.

•Why do we want to do that?

•Any REAL application?

What is Clustering?



Outline

•Motivation

•Distance functions

•Hierarchical clustering

•Partitional clustering

– K-means

– Gaussian Mixture Models

•Number of clusters



Partitional Clustering

• Nonhierarchical, each instance is placed in 

exactly one of K non-overlapping clusters.

• Since the output is only one set of clusters the 

user has to specify the desired number of 

clusters K.
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K-means Clustering: Finished!
Re-assign and move centers, until …

no objects changed membership.
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Algorithm k-means

1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers (randomly, if 

necessary).

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.

4. Re-estimate the K cluster centers, by assuming the 

memberships found above are correct.

5. Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration.



Algorithm k-means

1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers (randomly, if 

necessary).

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.

4. Re-estimate the K cluster centers, by assuming the 

memberships found above are correct.

5. Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration.

Use one of the distance / 

similarity functions we 

discussed earlier

Average / median of class 

members



Summary: K-Means
• Strength

– Simple, easy to implement and debug

– Intuitive objective function: optimizes intra-cluster similarity

– Relatively efficient: O(tkn), where n is # objects, k is # clusters, 
and t  is # iterations. Normally, k, t << n.

• Weakness
– Applicable only when mean is defined, what about categorical 

data?

– Often terminates at a local optimum. Initialization is important.

– Need to specify K, the number of clusters, in advance

– Unable to handle noisy data and outliers

– Not suitable to discover clusters with non-convex shapes

• Summary
– Assign members based on current centers

– Re-estimate centers based on current assignment



Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters



2

2

2

)(

22

1
)()|(),()( i

ix

i
i

i

i i

ewiCPiCxPxiCPxP









  

Gaussian Mixture Models

• Gaussian

– ex. height of one population

• Gaussian Mixture: Generative 

modeling framework

– ,

– ex. height in two populations
Likelihood of a data 

point given the model
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Gaussian Mixture Models

• Mixture of Multivariate 

Gaussian

– ex. y-axis is blood pressure 

and x-axis is age
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GMM: A generative model

• Assuming we know the number of 

components (k), their weights (wi) and 

parameters (i, ∑i) we can generate 

new instances from a GMM in the 

following way:

- Pick one component at random with 

probability wi for each component

- Sample a point x from N(i,∑i)

1,
2

1

2,
2
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w1

w1



wi 1
i





Estimating model parameters

• We have a weight, mean and covariance parameters for 

each class 

• As usual we can write the likelihood function for our 

model



p(x1 xn |)  p(x j |C  i)wi
i1

k












j1

n





• Decide the number of clusters, K

• Initialize parameters (randomly)

• E-step: assign probabilistic membership to all input samples j

• M-step: re-estimate parameters based on probabilistic 

membership

• Repeat until change in parameters are smaller than a threshold

GMM+EM = “Soft K-means”
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Iteration 1

The cluster 

means are 

randomly 

assigned 



Iteration 2



Iteration 5



Iteration 25



Strength of Gaussian Mixture Models

• Interpretability: learns a generative model of each cluster

– you can generate new data based on the learned model

• Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n.

• Intuitive (?) objective function: optimizes data likelihood



Weakness of Gaussian Mixture Models

• Often terminates at a local optimum. Initialization 
is important.

• Need to specify K, the number of clusters, in 
advance

• Not suitable to discover clusters with non-convex 
shapes

• Summary

– To learn Gaussian mixture, assign probabilistic 
membership based on current parameters, and re-
estimate parameters based on current membership



1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers / parameters (randomly).

3. Decide the class memberships of 

the N objects by assigning them to 

the nearest cluster center.

4. Re-estimate the K cluster centers, 

by assuming the memberships found 

above are correct.

Algorithm: K-means and GMM

5. Repeat 3 and 4 until parameters do not change.

3. E-step: assign probabilistic 

membership

4. M-step: re-estimate parameters 

based on probabilistic membership

K-means GMM



Clustering methods: Comparison

Hierarchical K-means GMM

Running 

time

naively, O(N3) fastest (each 

iteration is 

linear)

fast (each 

iteration is 

linear)

Assumptions requires a 

similarity / 

distance measure

strong 

assumptions

strongest 

assumptions

Input 

parameters

none K (number of 

clusters)

K (number of 

clusters)

Clusters subjective (only a 

tree is returned)

exactly K 

clusters

exactly K 

clusters



Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters
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How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many 

approximate methods. In the next few slides we will see an example.
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When k = 1, the objective function is 873.0
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When k = 2, the objective function is 173.1
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When k = 3, the objective function is 133.6



0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

6.00E+02

7.00E+02

8.00E+02

9.00E+02

1.00E+03

1 2 3 4 5 6

We can plot the objective function values for k equals 1 to 6…

The abrupt change at k = 2, is highly suggestive of two clusters 

in the data. This technique for determining the number of 

clusters is known as “knee finding” or “elbow finding”.

Note that the results are not always as clear cut as in this toy example
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Cross validation
• We can also use cross validation to determine the correct number of classes

• Recall that GMMs is a generative model. We can compute the likelihood of 
the left out data to determine which model (number of clusters) is more 
accurate



p(x1 xn |)  p(x j |C  i)wi
i1

k












j1

n





Cross validation



Other clustering methods 

(briefly)



Graph based clustering

• Represents points as a graph 

with edges corresponding to 

distance / similarity

• Apply graph based 

segmentation algorithms to 

identify clusters (looking for 

strongly connected components)

• Also known as „spectral 

clustering‟

How would k-

means perform on 

this? Hierarchical 

clustering?



Example



BiClustering

• What if we have objects that 

belong to more than one class?

- Tony Parker‟s new rap album

- A gene that is involved in cancer and 

Parkinsons disease

• BiClustering algorithms find a 

subset of the input features 

(words, gene levels etc.) and 

cluster based on these features

• Other (partially overlapping) 

subsets may be associated with 

other clusters 



Constrained clustering

• In many cases we have prior information 

that we can use to improve or inform the 

clustering algorithm

- „These documents should not be co-cclustered‟

- „Both of these genes are associated with cancer‟

• The information can be either „hard‟ 

(have to be in the same cluster) or „soft‟ 

(probability in the same cluster)

• Some algorithms can use this 

information to improve the outcome

• Often done by revising the target 

function (which usually means that it 

requires a new search strategy)
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B

Clustering data when knowledge 

about co-membership is provided



h*(x) 
h

argmin D(Ch,x) h*(x) - x‟s cluster

Ch - Center for cluster 

h



min D(xi,Ch*(xi))
i





 We want to use both, text data and prior information

 How? Changing the objective function of the algorithm to use side 

information. 

A

B

Constrained clustering: A new 

target function



min Wort(I) D(x j,Ch*(xj ))
j












I (x1 ,x2 ,x3 )



Penalty for 

partitioning objects 

that shuold likely be 

combined

Input sets How much to reward?

Can be decided using additional 

information sources



What you should know

• Why is clustering useful

• What are the different types of clustering 

algorithms

• What are the assumptions we are making 

for each, and what can we get from them

• Unsolved issues: number of clusters, 

initialization, etc.


