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• Organizing data into clusters

such that there is

• high intra-cluster similarity

• low inter-cluster similarity

•Informally, finding natural 

groupings among objects.

•Why do we want to do that?

•Any REAL application?

What is Clustering?



Example: clusty



Example: clustering genes

• Microarrays measures the activities 

of all genes in different conditions

• Clustering genes can help 

determine new functions for 

unknown genes

• An early “killer application” in this 

area

– The most cited (7,812) paper in PNAS!



Why clustering?

• Organizing data into clusters provides information 

about the internal structure of the data

– Ex. Clusty and clustering genes above

• Sometimes the partitioning is the goal

– Ex. Image segmentation

• Knowledge discovery in data

– Ex. Underlying rules, reoccurring patterns, topics, etc.



Unsupervised learning

• Clustering methods are unsupervised learning 

techniques

- We do not have a teacher that provides examples with their 

labels

• We will also discuss dimensionality reduction, 

another unsupervised learning methods later in the 

course



Outline

•Motivation

•Distance measure

•Hierarchical clustering

•Partitional clustering

– K-means

– Gaussian Mixture Models

•Number of clusters



What is a natural grouping among these objects?



School EmployeesSimpson's Family MalesFemales

Clustering is subjective

What is a natural grouping among these objects?



What is Similarity?
The quality or state of being similar; likeness; resemblance; as, a similarity of features.

Similarity is hard 

to define, but… 

“We know it when 

we see it”

The real meaning 

of similarity is a 

philosophical 

question. We will 

take a more 

pragmatic 

approach.  

Webster's Dictionary



Defining Distance Measures
Definition: Let O1 and O2 be two objects from the 

universe of possible objects. The distance (dissimilarity) 

between O1 and O2 is a real number denoted by D(O1,O2)

0.23 3 342.7

gene2
gene1



A few examples:

• Euclidian distance

• Correlation coefficient
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Inside these black boxes: 

some function on two variables 

(might be simple or very 

complex)

gene2gene1
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
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 x y

• Similarity rather than distance

• Can determine similar trends 



Outline

•Motivation

•Distance measure

•Hierarchical clustering

•Partitional clustering

– K-means

– Gaussian Mixture Models

•Number of clusters



Desirable Properties of a Clustering Algorithm

• Scalability (in terms of both time and space)

• Ability to deal with different data types 

• Minimal requirements for domain knowledge to 

determine input parameters

• Interpretability and usability

Optional

- Incorporation of user-specified constraints



Two Types of Clustering

Hierarchical

• Partitional algorithms: Construct various partitions and then 

evaluate them by some criterion

• Hierarchical algorithms: Create a hierarchical decomposition of 

the set of objects using some criterion (focus of this class)

Partitional

Top downBottom up or top down



(How-to) Hierarchical Clustering

The number of dendrograms with n

leafs  = (2n -3)!/[(2(n -2)) (n -2)!]

Number Number of Possible

of Leafs Dendrograms 

2 1

3 3

4 15

5 105

... …

10 34,459,425

Bottom-Up (agglomerative): Starting 

with each item in its own cluster, find 

the best pair to merge into a new cluster. 

Repeat until all clusters are fused 

together. 
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We begin with a distance 

matrix which contains the 

distances between every pair 

of objects in our database.



Bottom-Up (agglomerative):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best
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Bottom-Up (agglomerative):
Starting with each item in its own 

cluster, find the best pair to merge into 

a new cluster. Repeat until all clusters 

are fused together. 

…

Consider all 

possible 

merges…

Choose 

the best

Consider all 

possible 

merges… …

Choose 

the best

Consider all 

possible 

merges…

Choose 

the best…
But how do we compute distances 

between clusters rather than 

objects?



Computing distance between 

clusters: Single Link

• cluster distance = distance of two closest 
members in each class

- Potentially 
long and skinny 
clusters



Computing distance between 

clusters: : Complete Link

• cluster distance = distance of two farthest 
members

+ tight clusters



Computing distance between 

clusters: Average Link

• cluster distance = average distance of all 
pairs

the most widely 

used measure

Robust against 

noise



Example: single link
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Example: single link
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Example: single link
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Example: single link
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Average linkage

Single linkage

Height represents 

distance between objects 

/ clusters



Summary of Hierarchal Clustering Methods

• No need to specify the number of clusters in 

advance. 

• Hierarchical structure maps nicely onto human 

intuition for some domains

• They do not scale well: time complexity of at least 

O(n2), where n is the number of total objects.

• Like any heuristic search algorithms, local optima 

are a problem.

• Interpretation of results is (very) subjective. 



In some cases we can determine the “correct” number of clusters. 

However, things are rarely this clear cut, unfortunately.

But what are the clusters?



Outlier

One potential use of a dendrogram is to detect outliers

The single isolated branch is suggestive of a 

data point that is very different to all others



Example: clustering genes

• Microarrays measures the activities of all 

genes in different conditions

• Clustering genes can help determine new 

functions for unknown genes

• An early “killer application” in this area

– The most cited (7,812) paper in PNAS!



Partitional Clustering

• Nonhierarchical, each instance is placed in 

exactly one of K non-overlapping clusters.

• Since the output is only one set of clusters the 

user has to specify the desired number of 

clusters K.
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K-means Clustering: Initialization

Decide K, and initialize K centers (randomly)
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K-means Clustering: Iteration 1
Assign all objects to the nearest center.

Move a center to the mean of its members.
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K-means Clustering: Iteration 2
After moving centers, re-assign the objects…
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K-means Clustering: Iteration 2
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After moving centers, re-assign the objects to nearest centers.

Move a center to the mean of its new members.
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K-means Clustering: Finished!
Re-assign and move centers, until …

no objects changed membership.
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Algorithm k-means

1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers (randomly, if 

necessary).

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.

4. Re-estimate the K cluster centers, by assuming the 

memberships found above are correct.

5. Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration.



Algorithm k-means

1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers (randomly, if 

necessary).

3. Decide the class memberships of the N objects by 

assigning them to the nearest cluster center.

4. Re-estimate the K cluster centers, by assuming the 

memberships found above are correct.

5. Repeat 3 and 4 until none of the N objects changed 

membership in the last iteration.

Use one of the distance / 

similarity functions we 

discussed earlier

Average / median of class 

members



Why K-means Works
• What is a good partition?

• High intra-cluster similarity

• K-means optimizes 

– the average distance to members of 
the same cluster

– which is twice the total distance to 
centers, also called squared error
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Summary: K-Means
• Strength

– Simple, easy to implement and debug

– Intuitive objective function: optimizes intra-cluster similarity

– Relatively efficient: O(tkn), where n is # objects, k is # clusters, 
and t  is # iterations. Normally, k, t << n.

• Weakness
– Applicable only when mean is defined, what about categorical 

data?

– Often terminates at a local optimum. Initialization is important.

– Need to specify K, the number of clusters, in advance

– Unable to handle noisy data and outliers

– Not suitable to discover clusters with non-convex shapes

• Summary
– Assign members based on current centers

– Re-estimate centers based on current assignment



Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters



Gaussian Mixture Models

• Gaussian

– ex. height of one population

• Gaussian Mixture: Generative 

modeling framework

– ex. height of two population
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Gaussian Mixture Models

• Mixture of Multivariate 

Gaussian

– ex. y-axis is blood pressure 

and x-axis is age

( ) , ( | ) ( ; , )i i iP C k P x C i x      



GMM: A generative model

• Assuming we know the number of 

components (k), their weights (wi) and 

parameters (i,
2

i) we can generate 

new instances from a GMM in the 

following way:

- Pick one component at random with 

probability wi for each component

- Sample a point x from N(i,
2

i) 

1,
2

1

2,
2

2

w1

w1



wi 1
i





Estimating model parameters

• We have a weight, mean and covariance parameters for 

each class 

• As usual we can write the likelihood function for our 

model



p(x1 xn |)  p(x j |C  i)wi
i1

k












j1

n





• Decide the number of clusters, K

• Initialize parameters (randomly)

• E-step: assign probabilistic membership

• M-step: re-estimate parameters based on probabilistic 

membership

• Repeat until change in parameters are smaller than a threshold

GMM+EM = “Soft K-means”



pi, j  p(C  i | x j ) 
p(x j |C  i)p(C  i)

p(x j |C  k)p(C  k)
k





pi  pi, j
j







Iteration 1

The cluster 

means are 

randomly 

assigned 



Iteration 2



Iteration 5



Iteration 25



Strength of Gaussian Mixture Models

• Interpretability: learns a generative model of each cluster

– you can generate new data based on the learned model

• Relatively efficient: O(tkn), where n is # objects, k is # 
clusters, and t  is # iterations. Normally, k, t << n.

• Intuitive (?) objective function: optimizes data likelihood



Weakness of Gaussian Mixture Models

• Often terminates at a local optimum. Initialization 
is important.

• Need to specify K, the number of clusters, in 
advance

• Not suitable to discover clusters with non-convex 
shapes

• Summary

– To learn Gaussian mixture, assign probabilistic 
membership based on current parameters, and re-
estimate parameters based on current membership



1. Decide on a value for K, the number of clusters.

2. Initialize the K cluster centers / parameters (randomly).

3. Decide the class memberships of 

the N objects by assigning them to 

the nearest cluster center.

4. Re-estimate the K cluster centers, 

by assuming the memberships found 

above are correct.

Algorithm: K-means and GMM

5. Repeat 3 and 4 until parameters do not change.

3. E-step: assign probabilistic 

membership

4. M-step: re-estimate parameters 

based on probabilistic membership

K-means GMM



Clustering methods: Comparison

Hierarchical K-means GMM

Running 

time

naively, O(N3) fastest (each 

iteration is 

linear)

fast (each 

iteration is 

linear)

Assumptions requires a 

similarity / 

distance measure

strong 

assumptions

strongest 

assumptions

Input 

parameters

none K (number of 

clusters)

K (number of 

clusters)

Clusters subjective (only a 

tree is returned)

exactly K 

clusters

exactly K 

clusters



Outline

• Motivation

• Distance measure

• Hierarchical clustering

• Partitional clustering

– K-means

– Gaussian Mixture Models

– Number of clusters
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How can we tell the right number of clusters?

In general, this is a unsolved problem. However there are many 

approximate methods. In the next few slides we will see an example.
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When k = 1, the objective function is 873.0
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When k = 2, the objective function is 173.1
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When k = 3, the objective function is 133.6
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We can plot the objective function values for k equals 1 to 6…

The abrupt change at k = 2, is highly suggestive of two clusters 

in the data. This technique for determining the number of 

clusters is known as “knee finding” or “elbow finding”.

Note that the results are not always as clear cut as in this toy example
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Cross validation
• We can also use cross validation to determine the correct number of classes

• Recall that GMMs is a generative model. We can compute the likelihood of 
the left out data to determine which model (number of clusters) is more 
accurate



p(x1 xn |)  p(x j |C  i)wi
i1

k












j1

n





Cross validation



What you should know

• Why is clustering useful

• What are the different types of clustering 

algorithms

• What are the assumptions we are making 

for each, and what can we get from them

• Unsolved issues: number of clusters, 

initialization, etc.


