
10-601

Machine Learning

Neural Networks (NN)

Mimicking the brain

• In the early days of AI there was a lot of interest in

developing models that can mimic human thinking.

• While no one knew exactly how the brain works (and,

even though there was a lot of progress since, there is

still little known), some of the basic computational units

were known

• A key component of these units is the neuron.

The Neuron

• A cell in the brain

• Highly connected to other

neurons

• Thought to perform

computations by integrating

signals from other neurons

• Outputs of these

computation may be

transmitted to one or more

neurons

What can we do with NN?

• Classification

- We already mentioned many useful applications

• Regression

Input: Real valued variables

Output: One or more real values

• Examples:

- Predict the price of Google’s stock from Microsoft’s

stock price

- Predict distance to obstacle from various sensors

Linear regression

• Given an input x we would

like to compute an output y

• In linear regression we

assume that y and x are

related with the following

equation:

y = wx+

where w is a parameter

and  represents

measurement or other

noise

X

Y

Multivariate regression: Least

squares

• We already presented a solution for determining the

parameters of a linear regression problem.

Define:



 

0(x
1) 1(x

1) m (x
1)

0(x
2) 1(x

2) m (x
2)

0(x
n) 1(x

n) m (x
n)



















Then deriving w we get:



w  (T)1Ty

Multivariate regression: Least

squares

• The solution turns out to be:

We need to invert a k by k matrix

• This takes O(k3)

• Depending on k this can be rather slow



w  (T)1Ty

Where we are

• Linear regression – solved!

• But

- Solution may be slow

- Does not address general regression problems of the

form

y = f(Xw)

Back to NN: Preceptron

• The basic processing unit of a neural net

y=f(∑wixi)

w0

w1

w2

wk

x1

x2

xk

1

Linear regression

• Lets start by setting f(∑wixi)=∑wixi

• We are back to linear regression

• Unlike our original linear regression

solution, for perceptrons we will use a

different strategy

• Why?

- We will discuss this later, for now lets

focus on the solution …

y=wixi

w0

w1

w2

wk

x1

x2

xk

1

Gradient descent

z=(f(w)-y)2

w

Slope = z/ w

z

w

• Going in the opposite direction to the slope will lead to

a smaller z

• But not too much, otherwise we would go beyond the

optimal w

Gradient descent
• Going in the opposite direction to the slope will lead to

a smaller z

• But not too much, otherwise we would go beyond the

optimal w

• We thus update the weights by setting:

where  is small constant which is intended to prevent

us from passing the optimal w

w

z
ww




 

Example when choosing the ‘right’



• We get a monotonically decreasing error as we perform

more updates

Gradient descent for linear

regression

• We compute the gradient w.r.t. to each wi

• And if we have n measurements then

where xj,i is the i’th value of the j’th input vector

)(2

2

 













k

kki

k

kk

i

xwyxxwy
w







 n

j

j

T

jij

n

j

j

T

j

i

yxy
w 1

,

1

2)(2)(xw-xw-

Gradient descent for linear

regression

• If we have n measurements then

• Set

• Then our update rule can be written as







 n

j

j

T

jij

n

j

j

T

j

i

yxy
w 1

,

1

2)(2)(xw-xw-

)(j

T

jj y xw-





n

j

jijii xww
1

,2 

Gradient descent algorithm for

linear regression

1.Chose 

2.Start with a guess for w

3.Compute j for all j

4.For all i set

5. If no improvement for

stop. Otherwise go to step 3





n

j

jijii xww
1

,2 




n

j

j

T

jy
1

2)(xw-

Example

• W = 2

Gradient descent vs. matrix

inversion

• Advantages of matrix inversion

- No iterations

- No need to specify parameters

- Closed form solution in a predictable time

• Advantages of gradient descent

- Applicable regardless of the number of parameters

- General, applies to other forms of regression

Perceptrons for classification

• So far we discussed regression

• However, perceptrons can also be used for classification

• For example, output 1 is wTx > 0 and -1 otherwise

• Problem?

As with logistic vs. linear

regression we use the sigmoid

function as part of the perception

when using it for classification

Revised algorithm for sigmoid

regression

1.Chose 

2.Start with a guess for w

3.Compute j for all j

4.For all i set

5. If no improvement for

stop. Otherwise go to step 3




n

j

j

T

j gy
1

2))(x(w-

ijj

n

j

jjii xggww ,

1

)1(2  




Multilayer neural networks

• So far we discussed networks with one layer.

• But these networks can be extended to combine several

layers, increasing the set of functions that can be

represented using a NN

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Often called the ‘hidden layer’

Learning the parameters for

multilayer networks

• Gradient descent works by connecting the output to the

inputs.

• But how do we use it for a multilayer network?

• We need to account for both, the output weights and the

hidden layer weights

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

Learning the parameters for

multilayer networks

• Its easy to compute the update rule for the output weights

w1 and w2:

where

ijj

n

j

jjii vggww ,

1

)1(2  




v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

y=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

)(j

T

jj gy vw

Learning the parameters for

multilayer networks

• Its easy to compute the update rule for the output weights

w1 and w2:

where

ijj

n

j

jjii vggww ,

1

)1(2  




v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

)(j

T

jj gy vw

But what is the error associated with each of the

hidden layer states?

Backpropagation

• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient

descent to update them

• Set



 j,i  wi j (1 g j)g j

v1=g(wTx)
w0,1

x1

x2

1

v2=g(wTx)

v1=g(wTv)

w1,1

w2,1

w0,2

w1,2

w2,2

w1

w2

output error

weight

Backpropagation

• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient

descent to update them

• Set

• Our update rule changes to:



 j,i  wi j (1 g j)g j

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2  




Backpropagation

kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2  




The correct error term for each hidden state can be

determined by taking the partial derivative for each

of the weight parameters of the hidden layer w.r.t.

the global error function*:

2))(((xww
T

i

T

jj ggyErr 

*See RN book for details (pages 746-747)

Revised algorithm for multilayered

neural network
1.Chose 

2.Start with a guess for w, wi

3.Compute values vi,j for all hidden layer states i and inputs j

4.Compute j for all j:

5.Compute j,I

6.For all i set

7. For all k and i set

8. If no improvement for stop. Otherwise go to
step 3

)(j

T

jj gy vw

ijj

n

j

jjii vggww ,

1

)1(2  




kjij

n

j

ijijikik xggww ,,

1

,,,,)1(2  








s

i

ij

n

j

j

1

2

,

1

2

Examples

Figure 1: Feedforward ANN designed and tested

for prediction of tactical air combat maneuvers.

What you should know

• Linear regression

- Solving a linear regression problem

• Gradient descent

• Perceptrons

- Sigmoid functions for classification

• Multilayered neural networks

- Backpropagation

Deriving g’(x)

• Recall that g(x) is the sigmoid function so

• The derivation of g’(x) is below

xe
xg




1

1
)(

