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Machine Learning

Neural Networks (NN) 



Mimicking the brain

• In the early days of AI there was a lot of interest in 

developing models that can mimic human thinking.

• While no one knew exactly how the brain works (and, 

even though there was a lot of progress since, there is 

still little known), some of the basic computational units 

were known

• A key component of these units is the neuron.



The Neuron

• A cell in the brain

• Highly connected to other 

neurons

• Thought to perform 

computations by integrating 

signals from other neurons

• Outputs of these 

computation may be 

transmitted to one or more 

neurons 



What can we do with NN?

• Classification

- We already mentioned many useful applications

• Regression

Input: Real valued variables

Output: One or more real values

• Examples:

- Predict the price of Google’s stock from Microsoft’s 

stock price

- Predict distance to obstacle from various sensors    



Linear regression

• Given an input x we would 

like to compute an output y

• In linear regression we 

assume that y and x are 

related with the following 

equation: 

y = wx+

where w is a parameter 

and  represents 

measurement or other 

noise  
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Multivariate regression: Least 

squares

• We already presented a solution for determining the 

parameters of a linear regression problem.

Define:
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Then deriving w we get:



w  (T)1Ty



Multivariate regression: Least 

squares

• The solution turns out to be:

We need to invert a k by k matrix

• This takes O(k3)

• Depending on k this can be rather slow
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Where we are

• Linear regression – solved!

• But

- Solution may be slow

- Does not address general regression problems of the 

form 

y = f(Xw)



Back to NN: Preceptron

• The basic processing unit of a neural net
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Linear regression

• Lets start by setting f(∑wixi)=∑wixi

• We are back to linear regression

• Unlike our original linear regression 

solution, for perceptrons we will use a 

different strategy

• Why?

- We will discuss this later, for now lets 

focus on the solution …
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Gradient descent

z=(f(w)-y)2

w

Slope = z/ w

z

w

• Going in the opposite direction to the slope will lead to 

a smaller z

• But not too much, otherwise we would go beyond the 

optimal w



Gradient descent
• Going in the opposite direction to the slope will lead to 

a smaller z

• But not too much, otherwise we would go beyond the 

optimal w

• We thus update the weights by setting:

where  is small constant which is intended to prevent 

us from passing the optimal w
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Example when choosing the ‘right’ 



• We get a monotonically decreasing error as we perform 

more updates



Gradient descent for linear 

regression

• We compute the gradient w.r.t. to each wi

• And if we have n measurements then

where xj,i is the i’th value of the j’th input vector
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Gradient descent for linear 

regression

• If we have n measurements then

• Set 

• Then our update rule can be written as
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Gradient descent algorithm for 

linear regression

1.Chose 

2.Start with a guess for w

3.Compute j for all j

4.For all i set 

5. If no improvement for 

stop. Otherwise go to step 3 
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Example

• W = 2



Gradient descent vs. matrix 

inversion 

• Advantages of matrix inversion

- No iterations

- No need to specify parameters

- Closed form solution in a predictable time

• Advantages of gradient descent

- Applicable regardless of the number of parameters

- General, applies to other forms of regression



Perceptrons for classification 

• So far we discussed regression

• However, perceptrons can also be used for classification

• For example, output 1 is wTx > 0 and -1 otherwise

• Problem?

As with logistic vs. linear 

regression we use the sigmoid 

function as part of the perception 

when using it for classification



Revised algorithm for sigmoid 

regression

1.Chose 

2.Start with a guess for w

3.Compute j for all j

4.For all i set 

5. If no improvement for 

stop. Otherwise go to step 3 
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Multilayer neural networks

• So far we discussed networks with one layer.

• But these networks can be extended to combine several 

layers, increasing the set of functions that can be 

represented using a NN
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Learning the parameters for 

multilayer networks

• Gradient descent works by connecting the output to the 

inputs.

• But how do we use it for a multilayer network? 

• We need to account for both, the output weights and the 

hidden layer weights
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Learning the parameters for 

multilayer networks

• Its easy to compute the update rule for the output weights 

w1 and w2:

where
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Learning the parameters for 

multilayer networks

• Its easy to compute the update rule for the output weights 

w1 and w2:

where
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But what is the error associated with each of the 

hidden layer states?



Backpropagation

• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient 

descent to update them

• Set
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Backpropagation

• A method for distributing the error among hidden layer states

• Using the error for each of these states we can employ gradient 

descent to update them

• Set

• Our update rule changes to:
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Backpropagation
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The correct error term for each hidden state can be 

determined by taking the partial derivative for each 

of the weight parameters of the hidden layer w.r.t. 

the global error function*:
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*See RN book for details (pages 746-747)



Revised algorithm for multilayered 

neural network
1.Chose 

2.Start with a guess for w, wi

3.Compute values vi,j for all hidden layer states i and inputs j

4.Compute j for all j:

5.Compute j,I

6.For all i set

7. For all k and i set 

8. If no improvement for                        stop. Otherwise go to 
step 3 
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Examples

Figure 1: Feedforward ANN designed and tested

for prediction of tactical air combat maneuvers.



What you should know

• Linear regression

- Solving a linear regression problem

• Gradient descent

• Perceptrons

- Sigmoid functions for classification

• Multilayered neural networks

- Backpropagation



Deriving g’(x)

• Recall that g(x) is the sigmoid function so

• The derivation of g’(x) is below 
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