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Computational Learning Theory

What general laws constrain inductive learning?

We seek theory to relate:
e Probability of successful learning
e Number of training examples
e Complexity of hypothesis space

e Accuracy to which target function is
approximated

e Manner in which training examples presented



Sample Complexity: What it means

[Haussler, 1988]: probability that the version space is not e-exhausted
after m training examples is at most |Hle™ ™

Pr[(3h € H)s.t.(erroripqin(h) = O)A(errorirye(h) > €)] < |Hle "

T

Suppose we want this probability to be at most 6

1. How many training examples suffice?
1
m > =(In[H| 4+ In(1/6))
€
2. If errory,qn(h) = O then with probability at least (1-9):

errorse(h) < %(m H| + In(1/6))



Agnostic Learning

Result we proved: probability, after m training examples, that H
contains a hypothesis h with zero training error, but true error
greater than ¢ is bounded

Pr[(3h € H)s.t.(erroripqin(h) = O)A(errorirye(h) > €)] < |Hle "

probabilistic argument
Agnostic case: don’t know whether H contains a perfect hypothesis

Pr[(3h € H)s.t.(errorue(h) > €+ erroryan(h))] < |Hle 2™

Hoeffding bound



General Hoeffding Bounds

 When estimating the mean 6 inside [a,b] from m examples

—2me?
P(|0 — E[0]] > ¢) < 2e(-a)

« When estimating a probability 6 is inside [0,1], so

P(f - B[A)| > &) < 272"

« And if we're interested in only one-sided error, then

P((E[0] — 0) > €) < e 2m<



PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using
H if for all ¢ € C, distributions D over X, €
such that 0 < e < 1/2, and § such that
0<8<1/2,

learner L will with probability at least (1 — §)
output a hypothesis h € H such that
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




PAC Learning

Consider a class C' of possible target concepts
defined over a set of instances X of length n, and a

learner L using hypothesis space H.

Definition: C is PAC-learnable by L using Sufficient condition:

H if for all ¢ € C', distributions D over X, € Holds if L requires

such that 0 < e < 1/2, and § such that only a polynomial
0<d<1/2, number of training

les, and
learner L will with probability at least (14 8) o'0CEE T8

output a hypothesis h € H such that example is polynomial
errorp(h) < €, in time that is polynomial in
1/e, 1/, n and size(c).




What if H i1s not finite?

* Can’t use our sample complexity results for infinite H

» Need some other measure of complexity for H
— Vapnik-Chervonenkis (VC) dimension!



Sample Complexity based on VC dimension

How many randomly drawn examples suffice to e-exhaust
VS, p with probability at least (1-6)?

le., to guarantee that any hypothesis that perfectly fits the
training data is probably (1-8) approximately (g) correct

m > ~(41095(2/5) + 8V C(H)10g5(13/6))

Compare to our earlier results based on |H|:

m > 1(In(l/cS) + In |H])



The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can be
shattered by H, then VC(H) = oc.

Instance space X

VC(H)=3




VC dimension: examples

What is VC dimension of lines in a plane?
* Hy={((wy +wx; +Wyx;)>0 > y=1) }

T~



VC dimension: examples

What is VC dimension of

* Hy={((wg +wyx; + wyx;)>0 = y=1) }
— VC(H,)=3

« For H, = linear separating hyperplanes in n dimensions,
VC(H,)=n+1



Can you give an upper bound on VC(H) In
terms of |H|, for any hypothesis space H?
(hint: yes)



More VC Dimension Examples to Think About

* Logistic regression over n continuous features
— Over n boolean features?

 Linear SVM over n continuous features

 Decision trees defined over n boolean features
Fi<X,.X>>Y

« Decision trees of depth 2 defined over n features
« How about 1-nearest neighbor?

* Is there a hypothesis class with infinite VC dimension?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (€) correct?

m > ~(41092(2/8) + 8VC(H) loga(13/¢))

How tight is this bound?



Tightness of Bounds on Sample Complexity

How many examples m suffice to assure that any hypothesis that fits the
training data perfectly is probably (1-0) approximately (€) correct?

m > 2(41095(2/5) + 8VC(H) loga(13/€))
€
How tight is this bound?

Lower bound on sample complexity (Ehrenfeucht et al., 1989):

Consider any class C of concepts such that VC(C) > 1, any learner L,
any 0 <e<1/8, and any 0 <9 <0.01. Then there exists a distribution D
and a target concept in C, such that if L observes fewer examples than
vVe(o) -1

32¢

1
max |—1og(1/§),
€

Then with probability at least 8, L outputs a hypothesis with errorp(h) > €



Agnostic Learning: VC Bounds
[Schoélkopf and Smola, 2002]

With probability at least (1-0) every h € H satisfies

VC(H)(In VC(H) +1)+1In% 5

m

errorirye(h) < erroryyqin(h)—+ J
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Structural Risk Minimization  [vapni]

Which hypothesis space should we choose?
« Bias / variance tradeoff

SRM: choose H to minimize bound on true error!

VC(H)(In VC(H) +1)+1In% 5

m

ETTOTtrue (h) < errortrain(h) + J

* unfortunately a somewhat loose bound...



Mistake Bounds

So far: how many examples needed to learn?

What about: how many mistakes before
convergence?

Let’s consider similar setting to PAC learning:

e Instances drawn at random from X according to
distribution D

e Learner must classify each instance before
receiving correct classification from teacher

e Can we bound the number of mistakes learner
makes before converging?



Mistake Bounds: Find-S

Consider Find-S when H = conjunction of boolean
literals

FIND-S:

e Initialize h to the most specific hypothesis
BN <l NN L N by

e For each positive training instance x

— Remove from h any literal that is not
satisfied by x

e Output hypothesis h.

How many mistakes before converging to correct h?



Mistake Bounds: Halving Algorithm

1. Initialize VS < H

2. For each training eb(ample,

« remove from VS every
hypothesis that

e Learn concept using version space misclassifies this example

Consider the Halving Algorithm:

CANDIDATE-ELIMINATION algorithm

e Classify new instances by majority vote of
version space members

How many mistakes before converging to correct h?
e ... in worst case?

e ... in best case”



Optimal Mistake Bounds

Let M 4(C) be the max number of mistakes made
by algorithm A to learn concepts in C. (maximum
over all possible ¢ € C, and all possible training
sequences)

M(C) = max Mac)

Definition: Let C be an arbitrary non-empty
concept class. The optimal mistake bound for
C, denoted Opt(C), is the minimum over all
possible learning algorithms A of M 4(C').

Opt(C) = M4(C)

1mim .
A€learning algorithms

VO(C) < Opt(C) < MH&!L‘iny(C) < log?(lcl)




Weighted Majority Algorithm

a; denotes the i'" prediction algorithm in the pool A
of algorithms. w; denotes the weight associated with
Qa;.

— For all 7 initialize w; + 1

— For each training example (x, ¢(z))

* Initialize gy and ¢ to 0 when p=0,

* For each prediction algorithm a; equivalent to
P : I the Halving

-1If a;(z) = 0 then gy + go + w; algorithm..

If a;(x) = 1 then ¢ « q1 + w;
* If q1 > g then predict ¢(z) =1
If gy > ¢, then predict ¢(z) =0
If g1 = qo then predict 0 or 1 at random for
c(x)
* For each prediction algorithm a; in A do
If a;(x) # ¢(x) then w; + pBw;



Weighted Majority Even algorithms

that learn or
change over time...

[Relative mistake bound for
WEIGHTED-MAJORITY| Let D be-any sequence of
training examples, let A be any set of n prediction
algorithms, and let & be the minimum number of
mistakes made by any algorithm in A for the
training sequence D. Then the number of mistakes
over D made by the WEIGHTED-MAJORITY
algorithm using 3 = J is at most

2.4(k + log,n)



What You Should Know

Sample complexity varies with the learning setting
— Learner actively queries trainer
— Examples provided at random

Within the PAC learning setting, we can bound the probability that
learner will output hypothesis with given error

— For ANY consistent learner (case where ¢ € H)
— For ANY “best fit” hypothesis (agnostic learning, where perhaps ¢ not in H)

VC dimension as measure of complexity of H
Mistake bounds

Conference on Learning Theory: http://www.learningtheory.org
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