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ABSTRACT
The ultimate goal of advertisers are conversions represent-
ing desired user actions on the advertisers’ websites in the
form of purchases and product information request. In this
paper we address the problem of finding the right audience
for display campaigns by finding the users that are most
likely to convert. This challenging problem is at the heart
of display campaign optimization and has to deal with sev-
eral issues such as very small percentage of converters in the
general population, high-dimensional representation of the
user profiles, large churning rate of users and advertisers.
To overcome these difficulties, in our approach we use two
sources of information: a seed set of users that have con-
verted for a campaign in the past; and a description of the
campaign based on the advertiser’s website. We explore the
importance of the information provided by each of these two
sources in a principled manner and then combine them to
propose models for predicting converters. In particular, we
show how seed set can be used to capture the campaign-
specific targeting constraints, while the campaign metadata
allows to share targeting knowledge across campaigns. We
give methods for learning these models and perform exper-
iments on real-world advertising campaigns. Our findings
show that the seed set and the campaign metadata are com-
plimentary to each other and both sources provide valuable
information for conversion optimization.
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1. INTRODUCTION
Businesses, small and large alike, seek to expand by reach-

ing out to users who can be their potential customers. On-
line advertising is becoming one of the main advertising
channels, accounting for estimated $80 billion spending in
2011 and growing at the rate of 17% annually,1 with display
advertising being a big part of it. To make their campaign
effective, display advertisers target specific users based on
their historical pattern of activity or behavior, i.e., behav-
ioral targeting. Different advertisers target different kind of
users, e.g., a cellular company would be interested in users
looking to subscribe to a cell phone plan or buying a handset,
an online trading/investing company looks for finance-savvy
users interested in buying/selling of shares, a travel agency
wants to find customers for purchasing of flight tickets and
booking of hotel rooms. While in some cases targeting cri-
teria can be specified as a simple condition/function of the
past user behavior, to get the best performance, increasingly
sophisticated modeling techniques are being applied to de-
tect the behavior patterns indicative of the user interest in
a particular campaign/product.

Behavioral targeting aids advertisers in finding the right
audience for their campaigns by characterizing and target-
ing users who fit their needs. Intermediaries such as ad
networks, online exchanges and demand side platforms, per-
form behavioral targeting by bringing in the three parties
involved, users, publishers and advertisers. While the com-
plete details of advertising ecosystem is beyond the scope
of this paper, a simplified view showing the interaction be-
tween advertisers and publishers is given in Figure 1. Here
we use the term ad broker to refer to the intermediaries
that (a) facilitate the collection of user data to build pro-
files and (b) select the best advertising campaign to display
on a given Web page being viewed (impression) by a user
on the publisher site. The ad broker constructs profiles for
users based on their past online activities such as Web pages
viewed at the participating publishers, Web search queries,
vertical searches, etc. These profiles are then leveraged to
learn advertiser-specific segment/model describing the de-
sired target audience in terms of the pattern of user behav-
ior. The focus of this paper is on producing such effective
models for display advertising.

Most prior work on building behavioral targeting models
focuses on maximizing clicks [6, 22], that is, construct mod-
els to identify those users who are most likely to click on
ads when shown. While clicks serve as a natural proxy for

1According to a study by emarketer.com.
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Figure 1: Behavioral Targeting.

user’s interest in the advertised product, they can often be
misleading, e.g., click fraud, bounce clicks [7, 12, 23]. Hence,
in this work our goal is to target users for conversions, rep-
resenting user activity on the advertisers website beyond the
ad click [2, 4, 14]. Conversions are more tangible indication
of user interest in the advertiser than clicks, separating the
incidental and casual interest from purchasing intent.

Building conversion models is extremely challenging for
many reasons. Usually, only a very small portion of the
users that click eventually convert and thus, conversions are
very rare events. This constrains the modeling techniques
to parsimoniously work with the data. On the user side,
user profiles are high dimensional consisting of several dif-
ferent kinds of activities, ranging from user demographics
to search queries and page browsing. Dealing with such dif-
ferent activities in the presence of limited target/conversion
information is non-trivial. To add to this, the data is highly
volatile due to cookie churn, changes in campaigns, variabil-
ity in user interests and other temporal effects that do not
allow accumulating long-standing data and require the mod-
eling approach to have a quick start and dynamically adapt
over time as new data comes in.

Our Approach.
In view of these challenges, we propose a novel approach

for conversion prediction that relies on two distinct sources
of information: (a) the metadata associated with the ad-
vertising campaign such as ad creative, landing page etc.;
and (b) seed users who have converted or viewed ads for
the advertiser in the past. These two sources are compli-
mentary in the way they guide the modeling process. For
a new advertiser, since its ads have not been shown by the
advertising network yet, the ad broker does not have any
record of past converted users. As a result, initially, the ad
broker must rely on using campaign’s metadata to find right
users for it. The campaign metadata quickly helps in under-
standing what the advertising campaign is about and thus
identifying the potential targeting set. The metadata can
be leveraged both in an unsupervised manner (e.g., target
sports enthusiasts for sports related advertising) and super-
vised manner (e.g., pool the seed sets of campaigns using
campaign metadata; more details in Section 3).

Subsequently, when the network has shown ads to enough
users for the campaign, some of these users would have con-

verted. This information can be used in refining the ini-
tial model: the converted users make the positive instances,
while the unconverted users can be treated as the negatives.
This can be modeled as a regression/classification task; pre-
dicting the conversion likelihood based on user profiles.

We give a principled approach to combine the two sources
of information and propose a series of models. In particular,
we show how seed set can be used to capture the campaign-
specific targeting constraints (local component), while the
campaign metadata allows to share targeting knowledge across
campaigns (global component). For example, a “nike” cam-
paign can learn/teach which users to target from/to an“adi-
das” campaign. Also, we give methods for learning these
models in a joint manner that simultaneously optimizes for
the local and global components and a two-step approach
that performs this optimization in two stages.

In doing so we investigate several technical questions. For
example, how do we represent users and campaign in a suc-
cinct manner? How useful are the two sources of informa-
tion and how do they interact with each other? How can
we combine them both in a principled manner? We answer
these questions and make interesting observations through
real advertising data collected from a large ad network. For
example, we found that contrary to popular belief, learning
models for large campaigns (in terms of number of conver-
sions) can be more difficult compare to the smaller cam-
paigns and the metadata can help in dealing with this issue.

Contributions.
In summary, we make the following contributions in this

paper:

• We propose to predict conversions using: campaign
metadata and seed users. We examine their relative
value for campaigns with different characteristics (e.g.,
large and small, new and old).

• We give a set of modeling techniques that combine
the two sources of information for optimal performance
(through the local and global component). To the best
of our knowledge, this is the first study on behavioral
targeting to model the global component.

• Using the campaign metadata, we propose a method
to bootstrap the prediction model for a campaign by
exploiting information from related campaigns.

• We conduct extensive experiments and report the re-
sults from a real-life advertising dataset, to confirm the
validity of our approach.

Finally, we note that, although the experiments are fo-
cused on conversion maximization for performance-based
display advertisers, the principles described are applicable
in a broader context as user profiles are the basis for au-
dience selection in almost any setting of online advertising
targeting and content personalization.

2. PROBLEM DEFINITION
As in traditional brand and performance advertising, dis-

play advertisers aim to target the users that might be in-
terested in their products to promote their brand or get a
direct response from the users. Depending on the brand
or performance inclination, the advertisers can set up their
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campaigns using different goals. While brand advertisers are
primarily interested in number of ad views (impressions) by
the targeted audience, performance advertisers usually set
up either click or conversions goals. In this paper we focus
on performance advertisers with conversion optimization
goals. (More details on performance-advertising and the
technical difficulties of it are given in Section 5.1).

Mathematically, the conversion optimization task can be
formulated as the following. Let c ∈ C denote a campaign
and zc be the feature representation of its metadata. Let
seedc denote the seed set for campaign c with labeled con-
verters and non-converters. For each campaign c ∈ C, the
goal is to learn a model to differentiate between convert-
ers and non-converters. Let xu denotes the feature profile
of user u. In our example this is a high dimensional vec-
tor where each co-ordinate is binary. We want to learn a
function f(xu, zc, c) that helps us estimate the propensity
of user u to convert on campaign c.

We can achieve this through a classification approach where
we learn a function f that classifies a user u as a converter
for campaign c if f(xu, zc, c) > T , T is a threshold (could be
campaign specific) that is decided based on the cost of false
positive and false negative. An alternate approach could
learn f as odds of user u to convert on campaign c. The
output scores can then be used to perform classification.

We discuss the class of functions f in the modeling sec-
tion 3. Next we discuss how to derive the user and cam-
paigns vectors (xu and zc) that can be used in the subse-
quent modeling tasks.

2.1 User Representation
As in the offline advertising, to infer user interests, user

profiles are constructed from known past user activity. User
activity is tracked by the advertisers, publishers and third-
parties through browser cookies that uniquely identify the
user. For each user, the ad broker may store the history of
page visits, ad views, and search queries, and based on the
content of these events compose the profile used for target-
ing. Most of these events have textual content that can be
analyzed using established text processing techniques. For
example, the text of search queries issued, ids of ads viewed,
the content of the pages viewed, etc. To represent event
content we employ the bag of words method, which uses un-
igrams and bigrams, as well as nodes of a topical taxonomy
that represent more general text categories. This gives us
a feature vector representing a user, xu, for modeling pur-
poses (see Figure 2). The weight of each feature can be
binary or it can be computed based on its intensity in the
user activities.

2.2 Campaign Representation
As mentioned before, we employ two sources of informa-

tion to represent campaigns, as shown in Figure 2. First, we
derive metadata from the campaign definition. Each cam-
paign is composed of multiple ad creatives. An ad creative is
an image or text snippet that is displayed to the user. Upon
a click on the ad, the user is taken to a web page associated
with this creative, also called a landing page. The creatives
and the landing pages give a succinct characterization of
the advertising campaign, and they can be useful to infer
the domain of the campaign. In our approach, we construct
a campaign metadata feature vector, zc, using the creatives
and landing page content. One of the challenges in creat-

ing this feature vector is that campaigns can have multiple
creatives and also creatives can be associated with multiple
campaigns (see Figure 2). To be able to produce reasonable
campaign metadata, we considered several variants and in
our experiments we adopted the approach of merging the
content of all landing pages connected to a campaign as its
source of features. (More details are given in the experiment
section.)

The second data source that characterizes the campaign
is the set of seed users. The seed set is composed of positive
and negative examples with regard to the given campaign.
The positive set is composed of users that have converted for
this campaign in the past, while the negative set represents
the non-converted users. We will provide more details on
this in our experimental evaluation section.

For new campaigns, there is no seed set available, and
thus we must rely on campaign metadata to characterize
the targeting requirements of the campaign. Over time the
campaign expands as it is exposed to more and more users.
Note that each user in the seed set comes at the cost of
allocating one or more ad impressions to her.

3. MODELING APPROACHES
Recall from Section 2 that our goal is to learn function

f(xu, zc, c) that helps us estimate the propensity of user
u to convert on campaign c. We confine ourselves to a
class of functions f that can be decomposed additively as
f(xu, zc, c) = g(xu, zc) + fc(xu), where g is a function of
user features but depends on campaign c only through meta-
data zc, fc is a campaign-specific function of user features.

Function Class. We consider three choices for function
class f in this paper: a) Linear Support Vector Machine
(L-SVM), b) Logistic Regression (LR), and c) Naive-Bayes
(NB). Both SVM and logistic regression are known to pro-
vide good performance in advertising and many other ap-
plications, Naive Bayes was chosen due to its ability to sub-
stantially reduce variance at the expense of incurring bias
due to the independence assumption. In noisy conversion
data, this provides a good baseline to compare other more
advanced methods like Linear SVM and logistic regression.

Linear SVM. Let yu,c denote a binary indicator that takes
value +1 if user u converts on campaign c, −1 otherwise.
Then SVM estimates function f to minimize the hinge lossP

u,c max(0, 1−yu,c ·f(xu, zc, c)) (call L1 SVM), or squared

squared hinge loss
P

u,c max(0, 1−yu,c ·f(xu, zc, c))
2 (called

L2 SVM). If f is too flexible, it tends to overfit the data and
additional penalty term to constrain f is often used. Hence,
we assume f to be linear in the known variables (xu and
zc).

Logistic Regression. The hinge loss in this case is re-
placed by the sigmoid loss function

P
u,c log(1+ exp(−yu,c ·

f(xu, zc, c))). As in SVM, we confine ourselves to a linear
function and perform appropriate regularization. One can
impose either the L1 or L2 norm constraint on the unknown
coefficients. The former also ensures sparse solutions, i.e.,
many irrelevant variables have zero coefficients.

Naive Bayes. Naive Bayes builds f by estimating the joint
density of features (user and/or campaigns) separately in the
converting and non-converting classes. By Bayes theorem,
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Figure 2: User and campaign representation.

the log-odds of probability of conversion is given by

log
Dc(xu|yu,c = 1)

Dc(xu|yu,c = −1)
+ log

P (yu,c = 1)

P (yu,c = −1)

where Dc denotes the appropriate joint density of user fea-
tures in campaign c. The second term which is the prior log-
odds of conversion for a campaign is constant when classify-
ing a user as converter/non-converter on a given campaign,
hence it can be ignored. Estimating the notoriously high-
dimensional density is the crucial task here, Naive Bayes
simplifies this through the independence assumption which
ensures joint estimates as products of one dimensional marginals.
Although the one dimensional marginals are estimated with
precision and reduces variance, the bias incurred due to the
independence assumption may degrade performance.

For a given function class f , next we describe how we
use the seed set and the campaign metadata to build these
models.

3.1 Local Models Using the Seed Set
Given that each campaign targets a different set of users,

the first approach is to build a separate local model for each
campaign. In particular, given the seed set, we exploit the
positive and negative examples to learn a campaign-specific
targeting function. In other words, we ignore g(xu, zc) and
assume f(xu, zc, c) = fc(xu). For training L-SVM and lo-
gistic regression, fc(xu) = x′

u βc, where βc is an unknown
vector that is to be estimated from training data. Formally
stated, we obtain βc as a solution to the following optimiza-
tion problem.

argminβc

X
u∈C

L(xu, yu,c, βc) + λc‖βc ‖p (1)

where L is either the hinge max(0, 1−yu,c ·x′
u βc) or squared

hinge max(0, 1−yu,c·x′
u βc)

2 for L-SVM, and sigmoid log(1+
exp(−yu,c ·x′

u βc)) for logistic regression respectively. For L-
SVM, we use p = 2 but for logistic we use two values of p for
the penalty: p = 1 for L1 regularization and p = 2 gives L2

regularization. The parameter λc(≥ 0) determines the rel-
ative weight of the penalty term and is estimated through
cross-validation. Larger values of λc implies more penalty
on the parameters. We note that if the user vector xu con-
tains m features, the dimension of βc is also m. This leads

to too many parameters for large values of m, often the
case in advertising applications. The lack of conversions per
campaign further exacerbates the situation. In fact, in most
settings the number of conversions could be much smaller
than m. This makes penalization important to avoid over-
fitting. Hence the right choice of λc is essential for good
performance (see Section 4.3). We select this parameter by
extensive cross-validation.

Expanding xu = (xu1, · · · , xum), for Naive Bayes fc(xu)
is given by

fc(xu) =

mX
i=1

log
Di(xui|yuc = 1)

Di(xui|yuc = −1)
(2)

where Di(xui|yuc) is the conditional marginal density of the
ith user feature in class yuc. The estimation of marginal
density Di(.|.) depends on the nature of the feature. In
this paper, since all our user features are binary, this den-
sity is obtained simply by counting. For instance, Di(xui =
1|yuc = 1) is simply the fraction of converters on campaign
c who possess feature i. To avoid unreliable estimates for
campaigns with small number of conversions and/or features
that occur rarely, we perform mild smoothing. In particular,

we estimate Di(xui = 1|yuc = 1) as |u:xui=1,yuc=1|+(a·pic)
|u:yuc=1|+a

,

where a is a positive smoothing constant that could be inter-
preted as pseudo number of conversions, pic is the fraction of
users who possess feature i in campaign c. We choose small
values of a (e.g a ∈ [1, 5]). Our experiments showed that
Naive-Bayes is very robust and it showed little sensitivity in
performance with respect to the choice of a.

We also note that learning local models is computationally
efficient since the computation can be done separately for
each campaign in parallel. All our computations with SVM
and logistic regression were done with LIBLINEAR [19].

3.2 Global Models Using the Campaign Meta-
data

Per campaign local models work well for campaigns with
large seed set, i.e., large number of conversions. For new
campaigns or those with little training data, the perfor-
mance is not satisfactory due to data sparsity. To miti-
gate this, we employ the campaign metadata information
(zc). One option is to obtain user and campaign similarity
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using their features as in traditional information retrieval.
However, this does not work in our case since user and cam-
paign features are not mapped to the same semantic space.
The other idea is to exploit campaign metadata to correlate
learning across campaigns and perform better prediction for
those campaigns that lack enough data.

We explore several different ways of performing learning
across campaigns in this paper. The first approach shares
the model coefficients βc for user features across campaigns.
We call this the Merge-based Global model. The sec-
ond approach extends the merge model to include an addi-
tional component that models user and campaign interaction
through user features and campaign metadata. We call this
the Interaction-based Global model. Finally, we explore
our most complex model that extends the interaction model
to include a campaign-specific local model, we call this the
Global+Local model.

3.2.1 Merge-based Global Model
Here, we merge the seed users from all campaigns to learn

a global model. In other words, fc(xu) = x′β for all cam-
paigns c where β is the global weight vector. Thus, one
single set of coefficients is estimated for all campaigns. This
reduces the number of parameters dramatically and allows
us to derive more precise estimates of the global coefficients.
However, this model does not capture any user and cam-
paign specific interactions. Instead, it captures the user’s
propensity to convert in general, which can be useful in many
real scenarios. For example, the willingness of a user to con-
duct online transactions affects each campaign in the same
way and can be learned/exploited globally.

To build this global model, we put together the seed sets
of all campaigns. Even if the goal is to learn user’s global
propensity to convert, one has to be careful in training this
model. For example, campaigns with large seed sets can
easily dominate the global model and bias the model esti-
mates. This is counter-effective since such a global model
would not perform well on campaigns with small seed set,
which are the ones that should benefit the most from such
a collapsed model. We address this by weighing each cam-
paign’s seed set equally, both in the positive and negative
classes.

3.2.2 Interaction-based Global Model
Merge model estimates the global propensity of a user to

convert. However, it does not capture any affinity of cam-
paigns to each other. For instance, if a kind of users has
high propensity to convert on travel campaigns, we can per-
haps use this information to recommend these users to a
new travel campaign. One way to perform such cross cam-
paign learning is by positing a linear model that is a function
of both user and campaign features. We accomplish this
through our interaction model by assuming g(xu, zc) =
x′

uDzc, where D is a matrix of unknowns to be estimated
by pooling data across all campaigns. Hence, f(xu, zc, c) =
x′

uDzc + x′
uβ. Mathematically, we obtain D by solving the

following optimization problem.

minD

X
u,c

L(yu,c, x
′
uDzc + x′

uβ) + λ(‖D‖p + ‖β‖p) (3)

Note that this optimization is performed by pooling data
across all campaigns. Also, the number of parameters to be
estimated in (D,β) is (m + 1) · n, where m and n are the

number of user and campaign features respectively. When
m and/or n is large, this can lead to a high dimensional
optimization problem that is difficult to solve. For instance,
in our experiments we deal with m = 70k and n = 500, this
leads to an optimization problem consisting of 35M parame-
ters. Also, the computations are not separable by campaigns
(unlike Section 3.1). Further, several user and campaign fea-
tures are non-informative and noisy. To keep the interaction
matrix manageable, we use a simple a-priori feature filter-
ing procedure that removes irrelevant user features (since
the number of campaign features is relatively small, we do
not perform any such filtering there). This filtering is per-
formed through a Kullback-Liebler divergence measure, as
described below.

Variable filtering. We describe a variable importance
score for a user feature i. Let qi,c denote the conversion
probability for feature i on campaign c and qi. denote the
overall conversion probability for feature i. We compute the
values of qi,c and qi. using their maximum-likelihood esti-
mates, and to avoid unreliable estimates, we perform mild
smoothing similar in spirit to that described in the context
of Naive Bayes. The variable score for i is then given by the
Kullback-Liebler divergence

P
c qi,c · log(

qi,c

qi.
). Note that a

value of 0 implies no interaction of feature i with campaigns
and hence this feature is not important to be included in
our model.

3.3 Global + Local Model
Local models have the advantage that they capture the

campaign-specific effect. Global models capture the global
targeting constraints and have the advantage that they can
generalize well even when there is lack of campaign-specific
data. To get the best of both worlds, we build models that
include both the global and local components. More specif-
ically, we assume f(xu, zc, c) = x′

uDzc + x′
uβg + x′

uβc and
solve for (D, βg, βc:c∈C) by solving an appropriate L-SVM
or logistic regression task. Mathematically, we obtain the
parameters by solving the following optimization problem:

minD

X
u,c

L(yu,c, X
′
uDzc + x′

uβg + x′
uβc)

+ λ‖D‖p + λ‖βg‖p +
X

c

λc‖βc‖p

Here Xu are user features used for the interaction compo-
nent after a-priori filtering, and so xu can be different from
Xu. Note that this equation involves separate λs for each
campaign and another λ for the transfer learning parame-
ters. Obtaining so many tuning parameters when jointly op-
timizing (D, βg, βc:c∈C) by pooling data across all campaigns
is difficult in practice and computationally challenging.

We address the computational challenges by using two
different approaches

• simultaneously learn the global and local components
(i.e., joint approach) but assume λc = λ.

• learn the global component first, then fit a separate
campaign-specific local model using X ′

uD̂zc + x′
uβ̂g

as a known constant where D̂ and β̂g are the global
component estimates (i.e., offset approach). This en-

tails changing L(xu, yu,c, βc) to L(xu, yu,c, X
′
uD̂zc +

x′
uβ̂g + βc) in Equation 1.
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Figure 3: Campaign sizes in terms of the number of
conversions.

This model performs well on both mature and new cam-
paigns. For the latter, the transfer learning component
based on campaign features plays an important role, while
for the former the additional local term adds a correction
that helps it converge to the local campaign models.

4. EXPERIMENTS
Next we evaluate our proposed models on a real dataset

collected from a large advertising network.

4.1 Dataset
We constructed a dataset of user profiles, which are la-

beled as positive or negative depending on whether the user
converted on a given campaign. Any potentially personally
identifiable information was removed, and all the data was
anonymized. All datasets were compliant with the company
privacy policy. The users were drawn from 10 randomly
selected display ad campaigns, which were registered on a
major US advertising network in 2011. The dataset spans
more than 300,000 users allowing us to draw meaningful con-
clusions from these experiments. All these campaigns are
performance-based, i.e., advertisers only pay to the adver-
tising network for actual conversions. Of the 10 campaigns,
some are fairly small in terms of number of conversions (with
10 to 20 conversions per week, on average), while others are
large and receive many thousands of conversions every week,
as shown in Figure 3. For these campaigns we obtained a log
of ad activity for the four weeks period from 03/18/2011 to
04/15/2011. The log contains fully anonymized ids of users
who viewed, clicked, or converted on the ads from these
campaigns.

For each campaign c we construct a dataset with those
users that were shown one or more ads from the campaign
during the study period. Using the conversion data de-
scribed above we give binary labels to these user profiles
as either positive or negative. Users who converted make
the positive instances, while the rest make the negative ex-
amples. Since the number of negative examples can be huge
(many millions) for large campaigns, we down-sample them
to keep about 30,000 examples per campaign. We perform
3-fold cross validation on this dataset in our experiments
and report the performance averaged over the 3 folds.

User profiles.
For each user observed in the period above, we take the

four weeks of her online activity preceding the conversion to
construct the user profile, as described in Section 2. These
activities include page visits, ad views, and search queries.
Note that while predicting a test instance, say on day t, we
allow the prediction models to access user history up to day
t− 1. Hence, the prediction method is not using any future
information.

Campaign metadata.
For the 10 campaigns in our experiments we collected the

ad creatives associated with them (see Figure 2). This gives
us about 15,000 creatives, of which most are images and do
not have associated text. However, each creative contains a
landing page that denotes the URL of the page which the
user is directed to after clicking on the ad. We crawl each
landing page, parse, and attribute the extracted content to
its corresponding creative(s).

Since the relationship between campaigns and creatives is
many-to-many, it is not clear how to propagate creative’s
content to a campaign. The experiments reported in this
paper use a simple approach where, for a given campaign,
we weigh all the connected creatives equally and put their
content together. Another alternative is to differentiate the
creatives and their contributions to a given campaign us-
ing the creative-campaign graph, e.g., give less weight to
those creatives which are shared by more campaigns and
vice-versa. We leave this exploration as a part of our future
work. Finally, we perform some feature selection over cam-
paign features using the number of landing pages a feature
appears in.

Seed set.
We compose the seed set with positive and negative exam-

ples as described earlier in this section. Recall that the seed
set denotes the labeled users that are available for training
for a campaign at a given time. In our experiments we ex-
plore how the prediction power of the models depends on
the size of the seed set. Thus, we simulate different sizes
of the seed set by sampling the data from the full training
seed set of a campaign. To explain further, say local(c, x )
denotes the local model built for campaign c using x num-
ber of positive examples (since negative examples are easy
to acquire, even for a new campaign, we do not vary them).
This allows us to simulate a campaign at different stages of
its life. For example, to simulate a new campaign we set x to
0. To simulate slightly more mature campaigns, we can set
x to 30 or 70 conversions. For the long-standing campaigns
we set x to a large value which means that all the positives
examples for this campaign in the training folds are used.

4.2 Evaluation Metric
We use the Receiver Operating Characteristic (ROC) curve

to evaluate the ranked list of users produced by the differ-
ent targeting models. A ROC curve plots true positives
versus false positives for different classification thresholds.
The area under the ROC curve is particularly interesting
due to its probabilistic interpretation. The Area Under
Curve (AUC) gives the probability that the audience se-
lection method assigns a higher score to a random positive
example than a random negative example (i.e., probability of
concordance) [8, 10]. So, a purely random selection method
will have an area under the curve of exactly 0.5. An algo-
rithm that achieves AUC of 0.6 can distinguish a positive
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Figure 4: Performance comparison of SVM, Logistic
and Naive-Bayes based local models.

user from a negative user with 60% probability, and is thus
better than the random method by 20%.

An alternative metric could be to measure precision/recall
at a certain rank in the list. Note that different campaigns
may have different requirements in terms of precision and
recall. For example, a small campaign whose reach is lim-
ited would prefer higher recall, while a large campaign that
reaches out to many users might prefer higher precision).
Consequently, selecting a rank at which to evaluate preci-
sion such that it would be suitable for all campaigns, is not
possible. Instead, we use AUC since it combines the predic-
tion performance over all ranks into a single number.

4.3 Local models using the seed set
For this experiment we build a separate model for each

campaign using all the positive examples from the train-
ing folds. Hence, large campaigns will get to use more than
5000 conversions, while the small campaigns learn from some
500 conversions. First, in Figure 4 we show the perfor-
mance comparison of SVM, Logistic (with L2 regulariza-
tion) and Naive-Bayes models. The x-axis is the campaign
index where the campaigns have been sorted in the decreas-
ing order by the number of conversions (i.e., smaller indices
denote larger campaigns). On the y-axis we plot the best
AUC performance obtained for each campaign averaged over
3 folds after varying the model parameters. For SVM and
Logistic we vary the regularization constant and for Naive-
Bayes the smoothing constant was varied. We note that
Logistic and SVM perform very similar, while Naive-bayes
is slightly worse. However, we observed that Naive-Bayes
was not too sensitive to any learning parameters (such as
smoothing constant). The same is not true for SVM and
Logistic. In Figure 5 we show the performance of the SVM
models for 5 different campaigns (of the 10 campaigns in our
dataset). Here the x-axis denotes the value of the regulariza-
tion constant. As we can see that the performance depends
quite significantly on the regularization constant. When the
constant is too small, many useful features get eliminated
due to severe penalization. On the other hand, when the
constant is too large, the model starts overfitting and does
not perform well on the test folds. For brevity we will use
SVM to report the results for the remaining experiments.
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Figure 5: Effect of the regularization constant on
SVM models.

Impact of the number of conversions in the training
set.

We also note that the best performance for different cam-
paigns can be quite different; AUC varies from 0.55 to 0.75
in Figure 4. To analyze this further we performed the follow-
ing experiment. We varied the number of positive examples
that were allowed for training while learning the model for
a campaign. We call this local(c, x) where c denotes the
campaign and x denotes the allowed number of positive ex-
amples in the seed/training set. We note here that x is the
upper-bound; we vary x up to 5000 but for small campaigns
the seed set does not change beyond x = 540 since these are
the maximum number of conversions we have for the small
campaigns in our dataset. As mentioned earlier, in this ex-
periment we aim to simulate a campaign at different stages
of its life cycle. For new campaign x is close to 0, while for
a mature campaign x can be in a range of a couple of hun-
dreds depending on the size of the campaign. The results of
this experiment are shown in in Figure 6. To avoid clutter-
ing, we grouped campaigns by their sizes in the figure – the
largest 2 campaigns in terms of the number of conversions
were put into the “large” category, the middle 3 campaigns
into the “medium” and the bottom 5 into “small” category.

On the first inspection the results look contrary to what
one might expect: we see that the small campaigns not only
outperform the large campaigns when x is small, but they
also perform better for large values of x. For example, when
x = 5000 large campaigns use all their 5000 conversions as
positive examples for training, while small campaigns use
x = 540 positive examples only and they still perform bet-
ter. From a careful investigation of the data, we identified
the following reason behind this. The small campaigns are
quite restrictive in their definition of conversion (which is
partly the reason behind them being small), e.g., they re-
quire email sign-up, click on the ad and order completion
page for conversions. On the other hand, the large cam-
paigns have more relaxed definition of conversion, e.g., con-
versions defined as a view of the ad followed by some kind
of positive activity on the website. The converters for such
large campaigns are very heterogeneous and noisy. As a re-
sult, even for large values of x (i.e., large number of positive
examples in the training set) it is difficult to discriminate be-
tween converters and non-converters. Small campaigns, due
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Figure 6: Performance evaluation of the local mod-
els for different number of positives (x) in the seed
set. Note that for the small campaigns the maxi-
mum number of conversions is x = 540 in our dataset.

to their restrictive conversion definition and specific target-
ing segment, are easier to learn and have a quick start, i.e.,
even with a few positive examples the models can be learned
significantly well.

4.4 Global Models
We start the evaluation of global models by studying the

merge-based model. Recall from Section 3.2.1, merge model
pools the seed sets from all campaigns while learning the
model for a given campaign. In particular, let merge(c, x)
denote the merge model for campaign c when the seed set
is of size x. To learn merge(c, x), we employ all the data
from the other campaigns, {C − c}, and from campaign c we
use x positive examples. This simulates the setting where
campaign c is new and C− c are old/mature campaigns that
the ad matching platform has run in the past.

The results are shown in Figure 7. We compare merge(c, x)
with local(c, x) in the figure for small, medium and large
campaign sizes. We note that for large campaigns the merge
model performs better than the local model for small x val-
ues. In particular, till x = 200 conversions the merge model
achieves higher AUC than the local model. This is expected
in view of the previous section since we observed there that
the large campaigns have slow start. Hence, using the seed
sets of other campaigns allows the merge-based approach
to learn more robust models. For small/medium campaigns
the local models get better quite quickly (after 30 to 50 con-
versions). However, note that collecting 50 conversions may
take a couple of days (if not week) for small vertically fo-
cused campaigns in a real-world environment where multiple
advertisers compete for the attention of a relatively small set
of targeted users.

Interaction-based global model.
Next we study the interaction-based global model from

Section 3.2.2. We performed feature selection using KL-
divergence to keep 3000 user features. On the campaign
side, we kept 50 features per campaign by selecting the most
frequent words in landing pages. In Table 1 we compare the
interaction-based and merge-based global models. We note
that overall the interaction approach is better, as expected.

Campaign size Interaction-based model

Small 6.06%
Medium 0.4%
Large 3.93%

Table 1: Performance improvement achieved by the
interaction-based model over merge-based.

Campaign size Global Global+Local

Small -10.5% -8.5%
Medium 6.4% 6.1%
Large 70% 78.6%

Table 2: Performance improvement of the global and
global+local models over the local models for differ-
ent campaign sizes.

We expect the improvement to increase with the number of
campaigns pooled together, as that allows better learning of
the weights for the user-campaign interaction features.

As shown in the table, the most gain comes for the small
campaigns. Compare to the large campaigns which can have
many thousand creatives and landing pages, the small cam-
paigns have few creatives providing us with a high-quality
homogeneous set of campaign features.

4.5 Global + Local Models
In this experiment we study the global+local models from

Section 3.3. For brevity, we only focus on the joint opti-
mization approach. In Table 2 we compare the joint model
against the local(c, x) and merge(c, x) for x = 30. As dis-
cussed in Section 3.3, global+local model, in theory, sub-
sumes both the local and global model and is a strict gen-
eralization over these models. In practice, this seems to
hold true except for the small campaigns where the joint
global+local model is slightly worse than the local model.
We believe that this is due to the fact that the regulariza-
tion constant is shared across all campaigns in the joint ap-
proach, while the local models have per-campaign tuning of
regularization constant. In fact, we observed that if we force
the local models to share the same regularization constant,
then the performance difference between the local and joint
models on the small campaigns is marginal.

More importantly, we observe that the global+local ap-
proach brings a large improvement (about 78%) over the lo-
cal models on large campaigns. Recall that large campaigns
suffer from slow start and so this is greatly beneficial to these
campaigns. This demonstrates how the campaign metadata
can be useful in sharing targeting knowledge across cam-
paigns.

5. BACKGROUND AND RELATED WORK
First, we give some background on conversion optimiza-

tion in display advertising. Then we compare our work
against the existing literature.

5.1 Conversion Optimization in Display Ad-
vertising

Display advertising takes the form of graphical ads dis-
played on web pages alongside the original content. From
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Figure 7: Performance comparison of local model with merge-based model for different number of positives
(x) in the training set. The three figures are for the three different campaign groups (based on size).

its meager beginnings in the 1990’s, display advertising has
grown to an estimated $12.33 billion industry in 2011, ac-
cording to the latest IDC report [21]. Display ads today are
standardized in size, and created, sold, traded, and placed by
an industry composed of hundreds of companies that include
publishers, publisher optimizers, ad agencies, ad exchanges,
ad networks, advertisers, and others.

Conversions are user actions that indicate the ad was
successfully perceived by users such as making a purchase,
requesting a price quote, signing up for an account, etc.
Maximizing conversions is one of the key challenges for to-
day’s display ad brokers, posing several technical difficulties.
First, conversions are very rare events. Only a small percent-
age of users who see an ad will click on the ad, and only a
small percentage of those users convert. Conversions often
occur in the range of one out of 105−106 ad views. Further-
more, the conversions represent a diverse set of events and
there is no single definition for conversions as it varies among
the advertisers. For example, certain advertisers define con-
version as the event when a user purchases a product, while
others may call a subscription to mails/alerts or the filling
of a form as conversion. Thus the conversion rate can vary
significantly across different advertisers.

Lastly, conversions are tracked through conversion pixel
which is a javascript code embedded in the advertiser’s con-
version page (e.g., order completion page). The code gets
triggered to notify the advertising network when a user who
was shown ads by the advertising network reaches the con-
version page. A campaign can encompass multiple conver-
sion pixels in the creative landing pages. Conceptually, the
conversions pixels represent goals of the campaign while cre-
atives are the means of achieving those goals. There could
be multiple means to achieve the same goal as well as the
same mean can lead to multiple goals. This further com-
plicates the issue making the task of predicting conversions
even harder.

5.2 Prior Work
Our work is related to modeling of user behavior and tar-

geting based on observed past events. User behavior has
been studied to understand user’s querying pattern [20],
news browsing behavior [11], interests inferencing [17] and
personalized search [18]. In contrast, our focus is on online
advertising and behavioral targeting in particular. Initial
behavioral targeting studies mostly focused on predicting
clicks on ads [6, 22]. Clicks are used simply because they
are available and other information is not available at a large

scale. While clicks do represent user intent, they are known
to suffer with fraud issues [7, 12, 23]. Recently, however,
advertisers have been willing to share feedback (through
conversion pixeling) at the level of individual users, telling
publishers which of the users who saw the ad have actu-
ally purchased the product [2, 3, 4, 14]. Since conversions
are the ultimate goal of advertisers, we focus on conversion
optimization in this study.

Previous work on conversion optimization uses only the
seed set and learns local models [2, 3, 4], but as we showed
in our experiments that the model performance depends sig-
nificantly on the size of the seed set. Hence, we employ cam-
paign metadata along with the seed set and propose a series
of global models that pool campaigns together using their
metadata. When the campaigns are new and the seed set
is small or unavailable, we show that the metadata can be
significantly useful. To the best of our knowledge, this is
the first study in behavioral targeting framework which em-
ploys such collaborative modeling. Our work is also related
to the cold-start problem in collaborative filtering literature
where movies/items play the role of campaigns [1, 9, 15, 16].
However, there are a couple of major differences: (a) users
interact with and give thumbs up to many movies/items,
while they do not convert on that many campaigns, (b) the
number of campaigns is not of the order of the number of
items. Both these limitations restrict the factor models in
our setting [1, 15].

Another area of online advertising is social targeting where
the goal is to identify users having strong influence over oth-
ers [5]. Since brand affinity is likely to be shared between
socially connected users, Provost et al. [13] identified regions
of the social network that may be more susceptible to a given
brand message. This approach relies on the existence of a
social network, although in their work [13] the network was
approximated using co-visitations.

6. CONCLUSIONS
Advertisers want more bang per buck and as a result,

conversion optimization in display campaigns is getting in-
creasingly more attention. The task is very challenging for
several reasons such as very low conversion rate, high vari-
ance in number of conversions across campaigns, and di-
verse set of events logged as conversions. In addition, on
the user side we also have sparse and noisy profile activ-
ities. In this paper we proposed a two-pronged approach
for conversion optimization whereby we use a seed set of
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converters to capture the campaign-specific or local target-
ing criteria (e.g., interests in finance, shares, mortgage), and
the campaign metadata to share targeting knowledge across
campaigns (i.e., global component). To learn the local mod-
els we experimented with SVM, Logistic and Naive-Bayes
models. We showed that SVM and Logistic perform better
than Naive-Bayes, however they are sensitive with respect to
the setting of model parameters while Naive-bayes is fairly
resilient. We found it surprising that campaigns with higher
number of conversions are actually harder to model, due to
the heterogeneity among the converted users.

To investigate the global models we proposed merge-based
and interaction-based models for pooling together the infor-
mation from different campaigns. We showed how global
models improve the prediction performance for large cam-
paigns which suffer from slow learning rate during the initial
phase. Next we showed how our global+local models cap-
ture the best of both worlds. They include the campaign-
specific weight vector for user features (local), the shared
weight vector for user features (merge-based) and the inter-
action of user and campaign features (interaction-based).
Also, to learn these models we give a joint optimization
approach which simultaneously accounts for both the local
and global components. The offset approach, on the other
hand, performs optimization in two steps, but it allows per-
campaign regularization which is beneficial.

While in this work we focused on advertising, user profil-
ing and targeting are required in a wide range of web ap-
plications beyond advertising, such as content recommen-
dation and search personalization. The principles of user
profile generation and two-pronged targeting described in
this paper are not specific to advertising, and are therefore
applicable to these other applications.
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