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ABSTRACT

Collective classification predicts class labels simultaneously
for a group of related instances, rather than predicting a
class for each instance separately. The existing collective
classification methods are usually expensive due to the iter-
ative inference in graphical models and their learning proce-
dures based on iterative optimization. When the dataset is
large, the cost of maintaining large graphs or related in-
stances in memory becomes a problem as well. Stacked
graphical learning has been proposed for collective classi-
fication with efficient inference. However, the memory and
time cost of standard stacked graphical learning is still ex-
pensive since it requires cross-validation-like predictions to
be constructed during training. In this paper, we integrate
recently-developed single-pass online learning with stacked
learning, to save training time and to handle large stream-
ing datasets with minimal memory overhead. Experimen-
tally we will show that online stacked graphical learning
gives accurate results on eleven sample problems from three
domains, with less time and memory cost.

Keywords
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1. INTRODUCTION

There are many relational datasets, such as hyperlinked
webpages, scientific literature with dependencies among ci-
tations, and social networks. Collective classification has
been widely used for classification on relational datasets.
Collective classification predicts class labels simultaneously
for a group of related instances, rather than predicting a
class for each instance separately. Recently there have been
studies on relational models for collective inference, such as
relational dependency networks|l], relational Markov net-
works|2], Markov logic networks|3|, and stacked graphical
learning|4]. The existing collective classification methods
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are usually expensive due to the iterative inference in graph-
ical models and their learning procedures based on iterative
optimization. Also for large dataset, the cost of maintain-
ing large graphs or related instances in memory becomes a
problem.

Stacked graphical learning was proposed in the previous
work[4]. Stacked graphical learning is a meta-learning method,
which augments a base learner by providing the predicted
labels of related instances. One advantage of stacked graph-
ical learning is that the inference is very efficient. The pre-
vious work|4]| shows that stacked graphical learning is 40 to
80 times faster than Gibbs sampling during inference. How-
ever, the time and memory cost during training for standard
stacked graphical learning can be expensive since it applies
a base learner to the training data in a cross-validation-like
way to make predictions.

In this paper, we proposed a scheme to integrate recently-
developed single-pass online learning with stacked learning,
to save training time and to handle large streaming datasets
with minimal memory overhead. During the learning pro-
cedure of an online learner, the intermediate predictions for
training data are generated to learn the online model. Thus
the predictions for training data can be obtained naturally
and there is no need to apply the base learner several times
to the training data to obtain the predictions. Therefore on-
line stacked graphical models will save training time. Also
the single-pass online learning provides reliable predictions
and the learner needs to maintain only the classifiers and
does not need to store all the examples in memory. Thus
online stacked graphical learning will save training time and
memory.

2. ONLINE STACKED GRAPHICAL LEARN-

ING

2.1 Single-Pass Online Learning

Compared to batch methods, online learning methods are
often simpler to implement, faster, and require considerably
less memory. For such reasons, these techniques are natural
ones to consider for large-scale learning problems. Online
learning methods, such as Perceptron or Winnow, are also
naturally suited to stream processing; however, in practice
multiple passes over the same training data are required to
achieve accuracy comparable to state-of-the-art batch learn-
ers.

In order to address this problem, Carvalho & Cohen [9]
investigated the performance of different algorithms in the
single-pass online learning setting, i.e., online learning algo-



rithms restricted to a single training pass over the available
data. This setting is particularly relevant when the system
cannot afford several passes throughout the training set: for
instance, when dealing with massive amounts of data, or
when memory or processing resources are restricted, or when
data is not stored but presented in a stream.

Their work revealed that some single-pass online learning
algorithms can provide batch-level performance on a variety
of tasks. More specifically, it was observed that in classifi-
cation tasks for datasets with sparse features (very common
in Natural Language Processing tasks), a modification of
the Balanced Winnow algorithm (MBW or Modified Bal-
anced Winnow) [9] presented excellent performance - even
comparable to batch learners. They also observed that a
variation on the Perceptron algorithm called Voted Percep-
tron [23] presented fairly good results on classification tasks
when the feature is not sparse.

Voting (a.k.a. averaging) an online classifier is a technique
that, instead of using the best hypothesis learned so far,
uses a weighted average of all hypotheses learned during a
training procedure. The averaging procedure is expected to
produce more stable models, which leads to less overfitting
[24]. Averaging techniques have been successfully used with
the Perceptron algorithm [23] as well as with several other
online learning algorithms, including MBW [9].

22 MBW

MBW is a modification of the Balanced Winnow algo-
rithm, which in turn is an extension of the Winnow algo-
rithm [25) [26]. It is based on multiplicative updates and
it assumes the incoming example z; is a vector of positive
weights, i.e., z¢; > 0, Vt and Vj, where x; ; denotes the gth
feature of x;. This assumption is usually satisfied in NLP
tasks, where the x;; values are typically the frequency of
a term, presence of a feature, TFIDF value of a term, etc.
The learning algorithm is detailed in Table

In general terms, for each new example x; presented, the
current model will make a prediction g € {—1,1} and com-
pare it to the true class y: € {—1,1}. The prediction will
be based on the score function f, on the example z; and on
the current hypothesis. MBW is mistake-driven, i.e., only in
the case of a prediction mistake the hypothesis (or model)
will be updated.

Like Balanced Winnow, MBW has a promotion parameter
a > 1, a demotion parameter 3, where 0 < 8 < 1 and a
threshold parameter 8, > 0. It also has a margin parameter
M, where M > 0.

After the algorithm is initialized, an augmentation and a
normalization preprocessing step is applied to each incoming
example z;. When learning, the algorithm receives a new
example x; with m features, and it initially augments the
example with an additional feature(the (m + 1) feature),
whose value is permanently set to 1. This additional feature
is typically known as “bias” feature. After augmentation,
the algorithm then normalizes the sum of the weights of the
augmented example to 1, therefore restricting all feature
weights to 0 < zy,; < 1.

In MBW, the hypothesis is a combination of two parts: a
positive model u; and a negative model v;. After normal-
ization, the score function is calculated as score = (z¢, u;) —
(¢, ;) — O, where (x¢, w;) denote the intermediate product
of vectors x; and w;.

If the prediction is mistaken, i.e., (score - y:) < M, then

the models are updated. The update rule will be based on
multiplicative operations on the two models, taking into con-
sideration the promotion and demotion parameters (o and
B), as well as the particular feature weight of the incoming
example.

Table 1: Modified Balanced Winnow (MBW).
1. Initialize ¢ = 0, and models ugp and vg.
2. Fort=1,2,...,T:

(a) Receive new example x;.

(b) Augmentation: add “bias” feature to w:.

(¢) Normalize z¢ to 1.

(d) Calculate score = (x¢, ui) — (x¢, vi) — Oz

(e) Receive true class y;.

(f) If prediction was mistaken, i.e., (score-y:) < M:

i. Update models. For all feature j s.t. z > 0 :
_Juigra-(Itay;) Sifye >0
Uit1,j = .
uij B (L—mey) ,ifye <O

i o JVg B (L—aey) S ifye >0
T vijroa-(L+z;) ,ifye <0

Following the parameters suggested by by Carvalho & Co-
hen [9|, our implementation sets the promotion parameter
a = 1.5, the demotion parameter § = 0.5, the threshold
O, = 1.0, the “margin” M was set to 1.0, and the initial
weights were 0 = 2.0 and 6; = 1.0.

In testing mode, the augmentation step in MBW is the
same, but there is a small modification in the normaliza-
tion. Before the normalization of the incoming instance, the
algorithm checks each feature in the instance to see if it
is already present in the current models (u; and v;). The
features not present in the current model are then removed
from the incoming instance before the normalization takes
place.

2.3 Stacked Graphical Learning

We consider here collective classification tasks, in which
the goal is to “collectively” classify some set of instances.
In our notation, a dataset is D = {(z1,y1), ..., (Tn,yn)}. An
example is a pair of (z;,y;). x denote a set of instances and
y is the corresponding labels for x. For example, in a dataset
of linked webpages, x; can be a bag-of-word representation
of a webpage and y; is the category of x;.

Stacked graphical learning (SGL) captures the dependency
by expanding the feature of an instance x; with “predicted”
labels for the related instances. In SGL, a relational tem-
plate C finds the related instances. A relational template is
a procedure that finds all the examples related to a given
example and returns their indices|4]. For example, in a col-
lection of linked webpages, given a webpage x;, that in the
dataset webpages z;,, ..., z;, are related to z; (i.e., either
link-to or link-from z;), and predictions y for the set of
webpages x, C(z;,y) returns the predictions of the related
webpages, i.e., Ji,, ..., Yi, -

Since the relation between z; and x; might be one-to-
many, for example, webpages link to different numbers of



e Parameters: a relational template C.

e Learning algorithm: Given a training set D = {(z1,41), ..., (¥n,¥yn)} and a base learner A:

— Learn the local model, i.e., when k£ = 0:
Let f° = A(D°). Please note that D° = D.

— Learn the stacked models, for k = 1...K:

1. Construct predictions g)f*1 for 31:;“71 € D*~!in a cross-validation-like way, as shown in Figure

2. Construct an extended dataset D* = {(z%,11), ..., (z%,yn)} by converting each instance z; to =¥ as follows:
¥ = (zi,C(zi, §%71)), where C(z;, ") will return the predictions for examples related to ; such that
k ko Nt
Li = (miayil s Yip

3. Let f* = A(D").

e Inference algorithm: given a set of testing instances x :

L y° = f(x).
For k=1...K,

2. Carry out Step 2 above to produce x*.
3. y" = i)

Return yX.

Figure 1: Standard Stacked Graphical Learning and Inference. k: the level of stacking. z¥: the instance
expanded from z;, §¥: the prediction of z;, and f*: the learned classifier, at level k*" stacking.

Given a training set D = {(z1,y1), ..., (Zn,yn)} and a base
learner A, construct cross-validated predictions as follows:

1. Split D into J equal-sized disjoint subsets D;...D .

2. For j = 1...J, let f; = A(D — Dj;). That is, train
a classifier f;, based all the data from D except the
subset D;.

3. For z € Dj, 4 = f;(z). That is, for data in D;, apply
the classifier f; to obtain its prediction.

Figure 2: A cross-validation-like technique to obtain
predictions for training examples

webpages, we allow aggregation functions to combine pre-
dictions on a set of related instances into a single feature|4].

In standard SGL, we apply a cross-validation-like tech-
nique suggested by a meta-learning scheme, stacking (6], to
obtain the predictions for training data. The procedure to
obtain the predictions for training examples is shown in Fig-
ure [2| Figure [1f shows the learning and inference procedure
in standard stacked graphical learning. In our notation, k&
denotes the level of stacking, z¥ denotes the instance ex-
panded from z; at stacking of level k, §¥ denotes the predic-
tion of x; at stacking of level k, and f* denotes the classifier
learned at level k' stacking.

The cross-validation parameter J is set to 5 by default.
The previous work has shown that SGL converges quickly[4]
and usually we choose K = 1, i.e., one iteration of stacking.

The previous work[4] has shown that stacked graphical
learning is very efficient during inference. However, the stan-
dard training scheme can be expensive since it applies the
base learner to the training set several times, in a cross-
validation-like way. In this paper, we proposed to integrate
single-pass online learning with stacked graphical learning to
construct online stacked graphical models to save training

time and memory.

2.4 Online Stacked Graphical Learning

2.4.1 The algorithm

During the learning procedure of an online learner, the
intermediate predictions for training data are generated to
learn the online model. Thus the predictions for training
data can be obtained naturally and there is no need to
apply the base learner many times to the training data
in a cross-validation-like procedure to obtain the predic-
tions. Therefore combining the online learning scheme with
stacked graphical models can save training time.

One practical difficulty is that, while online learning meth-
ods produce satisfactory predictions after learning on the
whole training set, the intermediate predictions for the train-
ing data in the starting stage can be quite inaccurate. Thus,
to obtain fair “predictions” for training examples, we define
a burn-in data size b. That is, after training on b exam-
ples, we start recording intermediate predictions from the
online learner and expanding features with the predictions.
The learning procedure of online stacked learning is shown
in Figure Figure [3| shows that in the learning proce-
dure of online stacked graphical models, f° is trained on the
whole training dataset. After training on b examples, we
start recording the intermediate predictions 49, ..., 4%, which
are generated naturally during the learning of f°. For the
first level of stacking, i.e., kK = 1, we apply the relational
template to expand features (i.e., zj = (i, 97, ..., 95,)),
and train f' with expanded examples (zi,ys)..., (Th, yn).
Similarly, for the k" level of stacking, intermediate predic-
tions g}],z; 1 ..., 9%~! (which are generated naturally during
the learning of f*~') are recorded to expand features and
the k** stacked model is trained with expanded instances
Ty, k.

One thing we would like to point out is that, in stacked
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Figure 3: Online Stacked Graphical Learning

graphical learning for collective classification, given an in-
stance x;, we need to apply the relational template to re-
trieve the predicted labels for the related instances to ex-
tend features. Assume z; and its neighbors are contained in
a subset, we provide the instances in a subset to the online
learner as a group and extend the features after the predic-
tions for instances in the whole subset are made. Therefore
in general, we provide the instances in groups to the base
learner and the burn-in data size b will be chosen to include
a few subsets of instances. In practise, the dataset might
not be able to be split into disjoint subsets. In Section 3
we will demonstrate how to split the dataset into subsets
empirically.

2.4.2 Efficiency Analysis

Theoretically, when there are infinitely many training ex-
amples, i.e., kb << n, applying the online stacked graphical
learning shown in Figure [Jonly requires single-pass training
over the training set. We do not need to apply the cross-
validation-like trick shown in Figure 2] to get the predictions
for training examples. Therefore, online stacked graphical
learning can save training time. In Section 3 we will show
the speed-up experimentally as well.

In online stacked graphical learning, there are reliable pre-
dictions at level k after (k+ 1)b examples have streamed by,
and the learner needs to maintain only k classifiers and does
not need to store examples. Therefore, the algorithm can
save memory. This becomes extremely important when the
size of training data is huge. Also this feature allows online
stacked graphical learning to be applied to streaming data.

2.4.3  An Implementation With Limited Data

Theoretically, we assume kb << n and online stacked
graphical learning only requires single-pass training over the
training set. In practice, the assumption kb << n may not
hold. An implementation with limited training data is to
let b =n/2 and apply a one-and-half-pass procedure shown
in Figure[d] to obtain the predictions for training examples.
Using the procedure shown in Figure [4 to obtain the pre-
dictions, we end up with a learning and inference method
similar to the procedure shown in Figure[l] except that the
predictions are no longer obtained in a cross-validation-like

Given a training set D = {(z1,41), .., (Tn,yn)} and an on-
line learner A, construct predictions as follows:

1. Give the training data,(z1,y1), ..., (Zn,¥yn), to the on-
line learner, train a classifier fi, and record the in-
termediate predictions from online learning on z; for
j=n/2,..,n.

2. While z;,j = n/2,...,n, streaming by, train another
online learner fo with (&, /2,Yn/2); -, (Tn,Yn), go back
to 21, ..., Ty 2, keep learning f2 and record the inter-
mediate predictions for z;,j =1,...,n/2 — 1.

Figure 4: The procedure to obtain predictions for
training examples via an online base learner, with
limited data

way.

3. EXPERIMENTAL RESULTS

We evaluated stacked graphical learning on tasks from

three domains - collective classification over relational datasets,

sequential partitioning[20|, and named entity extraction.

3.1 Relational Datasets

The relational datasets we consider here include text re-
gion detection in Subcellular Location Image Finder (SLIF)
|7, [8] and document classification.

SLIF is a system which extracts information from both
figures and the associated captions in biological journal ar-
ticles. The text region detection dataset contains candidate
regions found in 1396 panels from 207 figures. The dataset
contains 4129 connections among the examples. The prob-
lem studied in this paper is to classify if the candidate re-
gions are text regions or not. More details about the dataset
and the dependencies defined in the data can be found in
the previous paper|4].

We use MBW as the base online learner for SLIF. The
features are the same as in the previous work[4]. In the
SLIF text region detection task, the candidate regions can
be naturally grouped into disjoint subgraphs, i.e., candidate
regions from the same figure construct a subgraph. There-



fore as long as the prediction for candidate regions from the
same figure is obtained, we can apply the relational template
to expand features. The relational template is the same as
the previous paper|4].

The document classification includes the webpage classifi-
cation on the WebKB dataset|10] and paper classification on
the Cora dataset and the CiteSeer dataset[11]. The WebKB
data contains aproximately 3800 webpages labelled from 6
categories and 8000 hyperlinks. The Cora data[l2] contains
2708 papers labelled from seven categories and 5429 cita-
tions. The Citeseer data|l3] contains 3312 papers labelled
from six categories and 4732 citations. Our current imple-
mentation of MBW only supports binary labels, so we con-
sidered the task corresponding to the most common label.
The relational template for document classification is the
same as the previous paper|4].

We use MBW as the base online learner for document clas-
sification. The feature sets and relational templates are the
same as the previous paper|4]. The WebKB dataset contains
webpages from four computer science departments. Thus we
split them into groups according to departments. We group
the papers in Cora dataset by the year of publishing. There
is no such year-of-publishing information available for the
Citeseer dataset, thus we only applied the implementation
shown in Figure [4] to Citeseer data.

3.2 Sequential Partitioning Datasets

Sequential partitioning tasks are sequential classification
tasks characterized by long runs of identical labels: examples
of these tasks include document analysis, video segmenta-
tion, and gene finding|20]. In this paper we consider three
datasets.

The signature dataset is originated from the problem of
recognizing the “signature” section of an email message.
Each line of an email message [19] is labels as either pos-
itive or negative. A positive label indicates that a particular
line in the message was part of a signature section, and neg-
ative otherwise. This dataset contains 33,013 labeled lines
from 617 email messages. About 10% of the lines are labeled
“positive”. We used the “basic” feature set from Carvalho
& Cohen [19].

One set of tasks involved classifying lines from FAQ docu-
ments with labels like “header”, “question”, “answer”, and
“trailer”. We used the features adopted by McCallum et
al [21] and the ai-general task adopted by Dietterich et al
[22]. The data consists of 7 long sequences, each sequence
corresponding to a single FAQ document; the task contains
10909 labeled lines. Our current implementation only sup-
ports binary labels, so we considered the label “answer” (A)
for the FAQ dataset.

Another task was video segmentation task, in which the
goal is to take a sequence of video “shots” (a sequence of ad-
jacent frames taken from one camera) and classify them into
categories such as “anchor”, “news” and “weather”. This
dataset contains 12 sequences, each corresponding to a sin-
gle video clip. There are a total of 406 shots, and about 700
features, which are produced by applying LDA to a 5x5, 125-
bin RGB color histogram of the central frame of the shot.
We constructed a video partitioning task, corresponding to
the most common label|20].

We use a Modified Balance Winnow learner[9] as the base
online learner in stacked graphical learning for sequential
partitioning. In the sequential partitioning task, the in-

stance is naturally grouped into sequences. Therefore as
long as the prediction for a sequence is obtained, we can
apply the relational template to expand features. The re-
lational templates returns the predictions of ten adjacent
examples (five preceding examples and five following exam-

ples).

3.3 Named Entity Extraction Datasets

We applied stacked graphical learning to named entity ex-
traction from Medline abstracts and emails. We used three
datasets to evaluate our method for protein name extrac-
tions. The University of Texas, Austin dataset contains 748
labeled abstracts|14]; the GENIA dataset contains 2000 la-
beled abstracts|15]; and the YAPEX dataset contains 200
labeled abstracts|16]. We also study person name extraction
from the email message corpus. The CSpace corpus we used
in this paper contains 216 email messages collected from a
management course at Carnegie Mellon University|17].

The feature sets and relational templates for named en-
tity extraction are the same as the previous work [4]. The
relational template will retrieve the predictions for the ad-
jacent words (with window size 5) and for the same word
appearing in one abstract, apply the COUNT aggregator,
and return the number of words in each category, given one
word. That is, let w; be the word in a document. For words
wj; = w; in the same document, we count the number of
times w; appearing with label y and use it as one of the
stacked features for w;.

In addition to this relational template, we applied another
relational template which just retrieves the predictions for
the adjacent words (with window size 5).

3.4 Accuracy of Stacked Graphical Learning
with efficient training

To evaluate the effectiveness of online stacked graphical
learning on the collective classification task, in Table [ we
compare local models, stacked models, and a state-of-art
competitive model. We evaluated two local models, MaxEnt
and MBW. We considered a standard stacked model based
on MaxEnt (with two-fold-cross-validation predictions), a
standard stacked model based on MBW (with two-fold-cross-
validation predictions), and an online stacked graphical model
based on MBW. We also compared our stacked graphical
model to a state-of-art relational graphical model, relational
dependency networks[1].

Relational dependency network (RDN) uses the same fea-
tures as the stacked model, but learns via a pseudo-likelihood
method, and does inference with Gibbs sampling. Jensen’s
package, PROXIMI TYEL provides an implementation of RDNs,
which takes Relational Probability Trees (RPT) for the con-
ditional probability distribution (CPD) component [1]. We
implemented RDN with MaxEnt for the CPD component,
using the same model graph as SGL and the same aggrega-
tions as the relational template. With our implementation,
it is easier to compare the running time.

Table [2] shows that on all of the four relational datasets,
stacked graphical learning improves the performance of the
base learner significantly. The two local models achieved
performance of the same level, so did the stacked graphical
models based on them. Our comparison to relational de-
pendency networks shows that stacked models can achieve

"http://kdl.cs.umass.edu/software/



Table 2: Performance of online stacked graphical learning for relational datasets: accuracy for “Document classi-
fication” and F1l-accuracy for “SLIF” are reported. We evaluated two local models: MaxEnt and MBW. We also
compared to a competitive relational model - relational dependency networks. The standard stacked model used two-
fold-cross-validation predictions. The online stacked graphical model is based on MBW. We used 1 level of stacking,
ie., K=1.

SLIF Document classification
WebKB Cora CiteSeer

Local model
MaxEnt 77.2 58.3 63.9 55.3
MBW 79.5 58.6 63.7 56.1
Competitive relational model
Relational Dependency Networks 86.7 74.2 72.9 58.7
Stacked model
Standard Stacked model (with MaxEnt, k=1) || 90.1 73.2 73.8 59.8
Standard Stacked model (with MBW, k=1) 92.1 74.2 73.5 60.3
Online Stacked model (k=1) 92.3 74.1 71.3 -

Table 3: Accuracy comparison of online stacked graphical learning for sequential partitioning. We evaluated two local
models: MaxEnt and MBW. We compared to a competitive graphical model - conditional random fields. The standard
stacked model used two-fold-cross-validation predictions. The online stacked graphical model is based on MBW. We
used 1 level of stacking.

Sequential Partitioning

FAQ signature video
Local model
MaxEnt 67.3 96.3 80.9
MBW 64.9 96.5 78.4
Competitive relational model
CRF's 85.6 98.1 83.0
Stacked model
Standard Stacked model (with MaxEnt, k=1) | 87.1 98.1 85.8
Standard Stacked model (with MBW, k=1) 84.1 98.3 85.5
Online Stacked model (k=1) 86.3 98.3 85.7

Table 4: Performance of online stacked graphical learning for Named Entity Extraction, F1 accuracy is reported.
“Relational template 1” returns predictions of adjacent tokens only, “relational template 2” returns predictions of
adjacent and repeated tokens.

Named Entity Extraction

uT Yapex  Genia CSpace
Local model
MaxEnt 69.1 62.1 66.5 74.2
MBW 67.9 62.3 66.9 75.1
Competitive relational model
CRFs 73.1 65.7 72.0 80.3

Stacked model

With relational template 1
Standard Stacked model (with MaxEnt, k=1) | 70.1 63.7 70.8 77.9
Standard Stacked model (with MBW, k=1) 72.1 63.9 71.3 79.9
Online Stacked model (with MBW, k=1) 72.6 64.6 72.3 80.0
With relational template 2
Standard Stacked model (with MaxEnt, k=1) | 77.3 68.2 78.5 82.1
Standard Stacked model (with MBW, k=1) 76.6 68.9 78.9 83.3
Online Stacked model (with MBW, k=1) 76.6 69.1 78.9 83.4




competitive results to the state-of-art model. However, the
online stacked graphical model requires much less training
time, which will be discussed later.

One thing we want to point out is that, due to the lack
of information on the year of publication, we can not im-
plement online stacked model to Citeseer data. And the
performance of online stacked model for Cora data is not
as good as the standard stacked graphical models. The rea-
son for the performance drop is that providing papers in
the order of years of publication to the online learner can
only provide the predictions of papers that were published
before the current timestamp and were cited by the current
paper, i.e., the predictions available sofar can only provide
information on the papers cited by the current paper, while
in reality, there is also information contained in the paper
that would be published and would cite the current paper.

Table [3 shows the performance of online stacked mod-
els on sequence partitioning. The state-of-art models we
consider here are conditional random fields (CRFs). CRFs
are sequential models that can capture the sequential de-
pendency. On all of the three datasets, stacked graphical
learning improves the performance of the base learner sig-
nificantly. The MaxEnt model did better than MBW on
two of three tasks, yet the stacked graphical models based
on them achieved performance of the same level.

Table @reported the Fl-accuracy of online stacked graph-
ical learning for Named Entity Extraction. In Section 3.3
we described two relational templates for named entity ex-
traction. One relational template captures sequential depen-
dency only(denoted as relational template 1 in Table , the
other one can also capture the dependency among the adja-
cent and repeated tokens(denoted as relational template 2
in Table 4)).

Table [4] shows that on all of the four named entity ex-
traction tasks, stacked graphical learning improves the per-
formance of the base learner. With relational template 1,
the stacked graphical models can capture the sequential de-
pendency and achieved comparable results to CRFs. With
relational template 2, the stacked graphical models achieved
better performance than CRFs. Moreover, the online stacked
graphical model requires much less training time.

3.5 Efficiency of the Training for Stacked Graph-

ical Learning

One big success of online stacked graphical learning is
that the learning is an online procedure and thus very ef-
ficient. We compared the training time of online stacked
graphical models (with one iteration) to that of competitive
relational models and the baseline standard stacked graphi-
cal model. The baseline algorithm we compare to is the best
algorithm in previous work|4], the standard stacked graphi-
cal model based on MaxEnt, with 5-fold-cross-validation to
obtain predictions during training. We compare the base-
line algorithm to the online stacked graphical learning with
implementation shown in Figure [d

Table shows the speedup, i.e., in the table “38.1” means
the training in standard stacked graphical learning is 38.1
times slower than that of online stacked graphical learning.
Table shows that compared to online stacked graphical
learning, standard stacked graphical learning based on Max-
Ent is approximately 57 times slower in training.

We also compared online stacked graphical learning with
the competitive relational models. Table [5[shows that on-

line stacked graphical learning is approximately 14 times
faster in training. Moreover, in the previous work[4], it has
been shown that during inference stacked graphical learning
is 40 to 80 times faster than Gibbs sampling in relational
dependency network

Therefore, online stacked graphical models can achieve
high accuracy with efficient training and testing.

Table 5: Comparison on training time.

Standard SGM | Competitive relational
vs Online SGM | model vs Online SGM

SLIF 38.1 7.9

WebKB 50.0 10.1

Cora 49.7 9.9

Signature 67.4 13.6

FAQ 69.0 14.0

Video 45.0 9.7

uT 68.7 20.3

Yapex 60.6 17.1

Genia 69.4 22.4

CSpace 52.0 15.3

Average speed-up | 57.0 14.0

4. CONCLUSIONS

Collective classification has been widely studied for classi-
fication on relational datasets. The existing relational graph-
ical models are usually expensive due to the iterative infer-
ence and their learning procedures based on iterative op-
timization. Also for large datasets, the cost of maintain-
ing large graphs or related instances in memory becomes a
problem. Stacked graphical learning was proposed in the
previous work and the inference of stacked graphical learn-
ing was shown to be very efficient - approximately 40 to 80
times faster than Gibbs sampling.

In this paper we presented an online training scheme for
stacked graphical learning. Integrating single-pass online
learning algorithm with stacked graphical learning can save
the time and memory cost during training. With fast train-
ing and inference, stacked graphical learning is very com-
petitive in applications where an efficient algorithm is ex-
tremely important. Experimentally we demonstrated that
the approach gives accurate results on eleven sample prob-
lems from three domains. In addition to the improvement on
efficiency, with the online learning scheme, stacked graphical
learning is also able to be applied to streaming data.

Future work will compare stacked models to more graph-
ical models such as relational Markov networks, and further
explore relational template design and base learner selection.
We are also considering more applications of stacked graph-
ical learning, such as the application to streaming data.
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