
ModelPlex: Verified Runtime Validation
of Verified Cyber-Physical System Models∗

Stefan Mitsch and André Platzer

Computer Science Department
Carnegie Mellon University, Pittsburgh PA 15213, USA,

{smitsch,aplatzer}@cs.cmu.edu

Abstract. Formal verification and validation play a crucial role in making cyber-
physical systems (CPS) safe. Formal methods make strong guarantees about the
system behavior if accurate models of the system can be obtained, including mod-
els of the controller and of the physical dynamics. In CPS, models are essential;
but any model we could possibly build necessarily deviates from the real world. If
the real system fits to the model, its behavior is guaranteed to satisfy the correct-
ness properties verified w.r.t. the model. Otherwise, all bets are off. This paper
introduces ModelPlex, a method ensuring that verification results about models
apply to CPS implementations. ModelPlex provides correctness guarantees for
CPS executions at runtime: it combines offline verification of CPS models with
runtime validation of system executions for compliance with the model. Model-
Plex ensures that the verification results obtained for the model apply to the ac-
tual system runs by monitoring the behavior of the world for compliance with the
model, assuming the system dynamics deviation is bounded. If, at some point,
the observed behavior no longer complies with the model so that offline verifica-
tion results no longer apply, ModelPlex initiates provably safe fallback actions.
This paper, furthermore, develops a systematic technique to synthesize provably
correct monitors automatically from CPS proofs in differential dynamic logic.

1 Introduction

Cyber-physical systems (CPS) span controllers and the relevant dynamics of the envi-
ronment. Since safety is crucial for CPS, their models (e. g., hybrid system models [29])
need to be verified formally. Formal verification guarantees that a model is safe w.r.t. a
safety property. The remaining task is to validate whether those models are adequate,
so that the verification results transfer to the system implementation [16,38]. This pa-
per introduces ModelPlex, a method to synthesize monitors by theorem proving: it uses
sound proof rules to formally verify that a model is safe and to synthesize provably
correct monitors that validate compliance of system executions with that model.

System execution, however, provides many opportunities for surprising deviations
from the model: faults may cause the system to function improperly [39], sensors may
deliver uncertain values, actuators suffer from disturbance, or the formal verification
∗ This material is based on research sponsored by DARPA under agreement number DARPA
FA8750-12-2-0291. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

B. Bonakdarpour and S.A. Smolka (Eds.): RV 2014, LNCS 8734, pp. 199–214, 2014.
c© Springer International Publishing Switzerland 2014

200 Stefan Mitsch, André Platzer

may have assumed simpler ideal-world dynamics for tractability reasons or made un-
realistically strong assumptions about the behavior of other agents in the environment.
Simpler models are often better for real-time decisions and optimizations, because they
make predictions feasible to compute at the required rate. The same phenomenon of
simplicity for predictability is often exploited for the models in formal verification and
validation. As a consequence, the verification results obtained about models of a CPS
only apply to the actual CPS at runtime to the extent that the system fits to the model.

Validation, i. e., checking whether a CPS implementation fits to a model, is an in-
teresting but difficult problem. Even more so, since CPS models are more difficult to
analyze than ordinary (discrete) programs because of the physical plant, the environ-
ment, sensor inaccuracies, and actuator disturbance. In CPS, models are essential; but
any model we could possibly build necessarily deviates from the real world. Still, good
models are approximately right, i. e., within certain error margins.

In this paper, we settle for the question of runtime model validation, i. e. validating
whether the model assumed for verification purposes is adequate for a particular system
execution to ensure that the verification results apply to the current execution.1 But
we focus on verifiably correct runtime validation to ensure that verified properties of
models provably apply, which is important for safety and certification [5].

If the observed system execution fits to the verified model, then this execution is
safe according to the offline verification result about the model. If it does not fit, then
the system is potentially unsafe because it no longer has an applicable safety proof, so
we initiate a verified fail-safe action to avoid safety risks. Checking whether a system
execution fits to a verified model includes checking that the actions chosen by the (un-
verified) controller implementation fit to one of the choices and requirements of the
verified controller model. It also includes checking that the observed states can be ex-
plained by the plant model. The crucial questions are: How can a compliance monitor
be synthesized that provably represents the verified model? How much safety margin
does a system need to ensure that fail-safe actions are initiated early enough for the
system to remain safe even if its behavior ceases to comply with the model?

The second question is related to feedback control and can only be answered when
assuming constraints on the deviation of the real system dynamics from the plant model
[33]. Otherwise, i. e., if the real system can be infinitely far off from the model, safety
guarantees are impossible. By the sampling theorem in signal processing [37], such
constraints further enable compliance monitoring solely on the basis of sample points
instead of the unobservable intermediate states about which no sensor data exists.2 This
paper presents ModelPlex, a method to synthesize verifiably correct runtime valida-
tion monitors automatically. ModelPlex uses theorem proving with sound proof rules
[29] to turn hybrid system models into monitors in a verifiably correct way. Upon
1 ModelPlex checks system execution w.r.t. a monitor specification, and thus, belongs to the
field of runtime verification [16]. In this paper we use the term runtime validation in order to
clearly convey the purpose of monitoring (i. e., runtime verification: monitor properties without
offline verification; ModelPlex: monitor model adequacy to transfer offline verification results).
2 When such constraints are not available, our method still generates verifiably correct runtime
tests, which detect deviation from the model at the sampling points, just not between them. A
fail-safe action will then lead to best-effort mitigation of safety risks (rather than guaranteed
safety).

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 201

noncompliance, ModelPlex initiates provably safe fail-safe actions. System-level chal-
lenges w.r.t. monitor implementation and violation cause diagnosis are discussed else-
where [8,19,41].

2 Preliminaries: Differential Dynamic Logic

For hybrid systems verification we use differential dynamic logic dL [27,29,31], which
has a notation for hybrid systems as hybrid programs. dL allows us to make statements
that we want to be true for all runs of a hybrid program ([α]φ) or for at least one run
(〈α〉φ). Both constructs are necessary to derive safe monitors: we need [α]φ proofs so
that we can be sure all behavior of a model (including controllers) are safe; we need
〈α〉φ proofs to find monitor specifications that detect whether or not system execution
fits to the verified model. Table 1 summarizes the relevant syntax fragment of hybrid
programs together with an informal semantics. The semantics ρ(α) of hybrid program
α is a relation on initial and final states of running α (defined in [27,32]). The set of
dL formulas is generated by the following grammar (∼ ∈ {<,≤,=,≥, >} and θ1, θ2
are arithmetic expressions in +,−, ·, / over the reals):

φ ::= θ1 ∼ θ2 | ¬φ | φ ∧ ψ | φ ∨ ψ | φ→ ψ | ∀xφ | ∃xφ | [α]φ | 〈α〉φ

Differential dynamic logic comes with a verification technique to prove correctness
properties of hybrid programs (cf. [31] for an overview of dL and KeYmaera).

3 ModelPlex Approach for Verified Runtime Validation

CPS are almost impossible to get right without sufficient attention to prior analysis, for
instance by formal verification and formal validation techniques. We assume to be given
a verified model of a CPS, i. e. formula (1) is proved valid,3 for example using [27,31].

φ→ [α∗]ψ with invariant ϕ→ [α]ϕ s.t. φ→ ϕ and ϕ→ ψ (1)
3 We use differential dynamic logic (dL) and KeYmaera as a theorem prover to illustrate our con-
cepts throughout this paper. The concept of ModelPlex is not predicated on the use of KeYmaera
to prove (1). Other verification techniques could be used to establish validity of this formula. The
flexibility of the underlying logic dL, its support for both [α]φ and 〈α〉φ, and its proof calculus,
however, are exploited for systematically constructing monitors from proofs in the sequel.

Table 1: Hybrid program representations of hybrid systems.
Statement Effect

α; β sequential composition, first run hybrid program α, then hybrid program β
α ∪ β nondeterministic choice, following either hybrid program α or β
α∗ nondeterministic repetition, repeats hybrid program α n ≥ 0 times
x := θ assign value of term θ to variable x (discrete jump)
x := ∗ assign arbitrary real number to variable x
?F check that a particular condition F holds, and abort if it does not(
x′1 = θ1, . . . , evolve xi along differential equation system x′i = θi
x′n = θn & F

)
restricted to maximum evolution domain F

202 Stefan Mitsch, André Platzer

γi

νi−1 νi ν̃i νi+1

...
γi−2

⊆ α
γi−1

?

⊆ α

γctrl

?

⊆ αctrl

γplant

αδplant

γi+1

model monitor controller monitor prediction monitor

Fig. 1: Use of ModelPlex monitors along a system execution

Formula (1) expresses that all runs of the hybrid system α∗, which start in states
that satisfy the precondition φ and repeat the model α arbitrarily many times, must end
in states that satisfy the postcondition ψ. Formula (1) is proved using some form of
induction, which shows that a loop invariant ϕ holds after every run of α if it was true
before. The model α is a hybrid system model of a CPS, which means that it describes
both the discrete control actions of the controllers in the system and the continuous
physics of the plant and the system’s environment.

The safety guarantees that we obtain by proving formula (1) about the model α∗

transfer to the real system, if the actual CPS execution fits to α∗. Since we want to
preserve safety properties, a CPS γ fits to a model α∗, if the CPS reaches at most those
states that are reachable by the model, i. e., ρ(γ) ⊆ ρ(α∗). However, we do not know
γ and therefore need to find a condition based on α∗ that we can check at runtime to
see if concrete runs of γ behave like α∗. Checking the postcondition ψ is not sufficient
because, if ψ does not hold, the system is already unsafe. Checking the invariant ϕ is
insufficient as well, because if ϕ does not hold the controller can no longer guarantee
safety, even though the system may not yet be unsafe. But if we detect when a CPS is
about to deviate from α∗ before leaving ϕ, we can still switch to a fail-safe controller
to avoid ¬ψ from happening.

ModelPlex derives three kinds of monitors (model monitor, controller monitor, and
prediction monitor, cf. Fig. 1). We check reachability between consecutive states in α,
αctrl, and αδplant by verifying states during execution against the corresponding monitor.

Model monitor In each state νi we test the sample point νi−1 from the previous exe-
cution γi−1 for deviation from the single α, not α∗ i. e., test (νi−1, νi) ∈ ρ(α). If
violated, other verified properties may no longer hold for the system; the system,
however, is still safe if a prediction monitor was satisfied on νi−1. Frequent viola-
tions indicate an inadequate model that should be revised to better reflect reality.

Controller monitor In intermediate state ν̃i we test the current controller decisions of
the implementation γctrl for compliance with the model, i. e., test (νi, ν̃i) ∈ ρ(αctrl).
Controller monitors are designed for switching between controllers similar to Sim-
plex [36]. If violated, the commands from a fail-safe controller replace the current
controller’s decisions to ensure that no unsafe commands are ever actuated.

Prediction monitor In intermediate state ν̃i we test the worst-case safety impact of
the current controller decisions w.r.t. the predictions of a bounded deviation plant
model αδplant, which has a tolerance around the model plant αplant, i. e., check
νi+1 |= ϕ for all νi+1 such that (ν̃i, νi+1) ∈ ρ(αδplant). Note, that we simulta-
neously check all νi+1 by checking ν̃i for a characterizing condition of αδplant. If

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 203

violated, the current control choice is not guaranteed to keep the system safe until
the next control cycle and, thus, a fail-safe controller takes over.

The assumption for the prediction monitor is that the real execution is not arbitrarily
far off the plant models used for safety verification, because otherwise guarantees can
be neither made on unobservable intermediate states nor on safety of the future sys-
tem evolution [33]. We propose separation of disturbance causes in the models: ideal
plant models αplant for correctness verification purposes, implementation deviation plant
models αδplant for monitoring purposes. We support any deviation model (e. g., piece-
wise constant disturbance, differential inclusion models of disturbance), as long as the
deviation is bounded and differential invariants can be found. We further assume that
monitor evaluations are at most some ε time units apart (e. g., along with a recurring
controller execution). Note that disturbance in αδplant is more manageable compared to
α∗, because we can focus on single runs α instead of repetitions for monitoring.

3.1 Relation between States

We systematically derive a check that inspects states of the actual CPS to detect devia-
tion from the model α∗. We first establish a notion of state recall and show that, when
all previous state pairs complied with the model, compliance of the entire execution can
be checked by checking the latest two states (νi−1, νi) (see [25, App. A] for proofs).

Definition 1 (State recall). We use V to denote the set of variables whose state we
want to recall. We use Υ−V ≡

∧
x∈V x = x− to express a characterization of the values

of variables in a state prior to a run of α, where we always assume the fresh variables
x− to occur solely in Υ−V . The variables in x− can be used to recall this state. Likewise,
we use Υ+

V ≡
∧
x∈V x = x+ to characterize the posterior states and expect fresh x+.

With this notation the following lemma states that an interconnected sequence of α
transitions forms a transition of α∗.

Lemma 1 (Loop prior and posterior state). Let α be a hybrid program and α∗

be the program that repeats α arbitrarily many times. Assume that all consecutive
pairs of states (νi−1, νi) ∈ ρ(α) of n ∈ N+ executions, whose valuations are re-
called with Υ iV ≡

∧
x∈V x = xi and Υ i−1V are plausible w.r.t. the model α, i. e.,

|=
∧

1≤i≤n
(
Υ i−1V → 〈α〉Υ iV

)
with Υ−V = Υ 0

V and Υ+
V = ΥnV . Then, the sequence of

states originates from an α∗ execution from Υ 0
V to ΥnV , i. e., |= Υ−V → 〈α∗〉Υ

+
V .

Lemma 1 enables us to check compliance with the model α∗ up to the current state
by checking reachability of a posterior state from a prior state on each execution of α
(i. e., online monitoring [16], which is easier because the loop was eliminated). To find
compliance checks systematically, we construct formula (2), which relates a prior state
of a CPS to its posterior state through at least one path through the model α. 4

Υ−V → 〈α〉Υ
+
V (2)

4 Consecutive states for α∗ mean before and after executions of α (i. e., α
↓
;α
↓
;α, not within α).

204 Stefan Mitsch, André Platzer

This formula is satisfied in a state ν, if there is at least one run of the model α
starting in the state ν recalled by Υ−V and results in a state ω recalled using Υ+

V . In other
words, at least one path through α explains how the prior state ν got transformed into
the posterior state ω. The dL formula (2) characterizes the state transition relation of
the model α directly. Its violation witnesses compliance violation. Compliance at all
intermediate states cannot be observed by real-world sensors, see Section 3.5.

In principle, formula (2) would be a monitor, because it relates a prior state to a
posterior state through the model of a CPS; but the formula is hard if not impossible
to evaluate at runtime, because it refers to a hybrid system α, which includes nonde-
terminism and differential equations. The basic observation is that any formula that is
equivalent to (2) but conceptually easier to evaluate in a state would be a correct moni-
tor. We use theorem proving for simplifying formula (2) into quantifier-free first-order
real arithmetic form so that it can be evaluated efficiently at runtime. The resulting
first-order real arithmetic formula can be easily implemented in a runtime monitor and
executed along with the actual controller. A monitor is executable code that only re-
turns true if the transition from the prior system state to the posterior state is compliant
with the model. Thus, deviations from the model can be detected at runtime, so that
appropriate fallback and mitigation strategies can be initiated.

Remark 1. The complexity for evaluating an arithmetic formula over the reals for con-
crete numbers is linear in the formula size, as opposed to deciding the validity of such
formulas, which is doubly exponential. Evaluating the same formula on floating point
numbers is inexpensive, but may yield wrong results due to rounding errors; on exact
rationals the bit-complexity can be non-negligible. We use interval arithmetic to obtain
reliable results efficiently (cf. [25, App. C]).

Example 1. We will use a simple water tank as a running example to illustrate the con-
cepts throughout this section. The water tank has a current level x and a maximum level
m. The water tank controller, which runs at least every ε time units, nondeterministi-
cally chooses any flow f between a maximum outflow−1 and a maximum inflow m−x

ε .
This water tank never overflows, as witnessed by a proof for the following dL formula.

0 ≤ x ≤ m ∧ ε > 0︸ ︷︷ ︸
φ

→
[(

f := ∗; ?
(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
)∗] ψ︷ ︸︸ ︷

(0 ≤ x ≤ m)

3.2 ModelPlex Monitor Synthesis

This section introduces the nature of ModelPlex monitor specifications, our approach
to generate such specifications from hybrid system models, and how to turn those spec-
ifications into monitor code that can be executed at runtime along with the controller.

A ModelPlex specification corresponds to the dL formula (2). If the current state of
a system does not satisfy a ModelPlex specification, some behavior that is not reflected
in the model occurred (e. g., the wrong control action was taken, unanticipated dynamics
in the environment occurred, sensor uncertainty led to unexpected values, or the system
was applied outside the specified operating environment).

A model monitor χm checks that two consecutive states ν and ω can be explained
by an execution of the model α, i. e., (ν, ω) ∈ ρ(α). In the sequel, BV (α) are bound

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 205

variables in α, FV (ψ) are free variables in ψ,Σ is the set of all variables, andA\B de-
notes the set of variables being in some set A but not in some other set B. Furthermore,
we use ν|A to denote ν projected onto the variables in A.

Theorem 1 (Model monitor correctness). Let α∗ be provably safe, so |= φ→ [α∗]ψ.
Let Vm = BV (α) ∪ FV (ψ). Let ν0, ν1, ν2, ν3 . . . ∈ Rn be a sequence of states, with
ν0 |= φ and that agree on Σ\Vm, i. e., ν0|Σ\Vm

= νk|Σ\Vm
for all k. We define

(ν, νi+1) |= χm as χm evaluated in the state resulting from ν by interpreting x+ as
νi+1(x) for all x ∈ Vm, i. e., ννi+1(x)

x+ |= χm. If (νi, νi+1) |= χm for all i < n then we
have νn |= ψ where

χm ≡
(
φ|const → 〈α〉Υ+

Vm

)
(3)

and φ|const denotes the conditions of φ that involve only constants that do not change in
α, i. e., FV (φ|const) ∩BV (α) = ∅.

Our approach to generate monitor specifications from hybrid system models takes a
verified dL formula (1) as input and produces a monitor χm in quantifier-free first-order
form as output. The algorithm, listed in [25, App. D], involves the following steps:

1. A dL formula (1) about a model α of the form φ → [α∗]ψ is turned into a specifi-
cation conjecture (3) of the form φ|const → 〈α〉Υ+

Vm
.

2. Theorem proving on the specification conjecture (3) is applied until no further proof
rules are applicable and only first-order real arithmetic formulas remain open.

3. The monitor specification χm is the conjunction of the unprovable first-order real
arithmetic formulas from open sub-goals.

Generate the monitor conjecture. We map dL formula (1) syntactically to a specifi-
cation conjecture of the form (3). By design, this conjecture will not be provable. But
the unprovable branches of a proof attempt will reveal information that, had it been
in the premises, would make (3) provable. Through Υ+

Vm
, those unprovable conditions

collect the relations of the posterior state of model α characterized by x+ to the prior
state x, i. e., the conditions are a representation of (2) in quantifier-free first-order real
arithmetic.

Example 2. The specification conjecture for the water tank model is given below. It is
constructed from the model by removing the loop, flipping the modality, and formu-
lating the specification requirement as a property, since we are interested in a relation
between two consecutive states ν and ω (recalled by x+, f+ and t+). Using theorem
proving [34], we analyze the conjecture to reveal the actual monitor specification.

ε > 0︸ ︷︷ ︸
φ|const

→
〈
f := ∗; ?

(
−1 ≤ f ≤ m−x

ε

)
;

t := 0; (x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε)
〉 Υ+

Vm︷ ︸︸ ︷
(x = x+ ∧ f = f+ ∧ t = t+)

Use theorem proving to analyze the specification conjecture. We use the proof rules of
dL [27,31] to analyze the specification conjecture χm. These proof rules syntactically
decompose a hybrid model into easier-to-handle parts, which leads to sequents with
first-order real arithmetic formulas towards the leaves of a proof. Using real arithmetic
quantifier elimination we close sequents with logical tautologies, which do not need to

206 Stefan Mitsch, André Platzer

be checked at runtime since they always evaluate to true for any input. The conjunction
of the remaining open sequents is the monitor specification; it implies (2).

A complete sequence of proof rules applied to the monitor conjecture of the water
tank is described in [25, App. B]. Most steps are simple when analyzing specification
conjectures: sequential composition (〈; 〉), nondeterministic choice (〈∪〉), deterministic
assignment (〈:=〉) and logical connectives (∧r etc.) replace current facts with simpler
ones or branch the proof (cf. rules in [27,32]). Challenge arise from handling nondeter-
ministic assignment and differential equations in hybrid programs.

Let us first consider nondeterministic assignment x := ∗. The proof rule for non-
deterministic assignment (〈∗〉) results in a new existentially quantified variable. By se-
quent proof rule ∃r, this existentially quantified variable is instantiated with an arbitrary
term θ, which is often a new logical variable that is implicitly existentially quanti-
fied [27]. Weakening (Wr) removes facts that are no longer necessary.

(〈∗〉)
∃X〈x :=X〉φ
〈x := ∗〉φ

1 (∃r)
Γ ` φ(θ), ∃xφ(x),∆
Γ ` ∃xφ(x),∆

2 (Wr)
Γ ` ∆
Γ ` φ,∆

1 X is a new logical variable
2 θ is an arbitrary term, often a new (existential) logical variable X .

Optimization 1 (Instantiation Trigger). If the variable is not changed in the remain-
ing α, xi = x+i is in Υ+

Vm
and X is not bound in Υ+

Vm
, then instantiate the existential

quantifier by rule ∃r with the corresponding x+i that is part of the specification conjec-
ture (i. e., θ = x+i), since subsequent proof steps are going to reveal θ = x+i anyway.

Otherwise, we introduce a new logical variable, which may result in an existential quan-
tifier in the monitor specification if no further constraints can be found later in the proof.

Example 3. The corresponding steps in the water tank proof use 〈∗〉 for the nondeter-
ministic flow assignment (f := ∗) and ∃r to instantiate the resulting existential quantifier
∃F with a new logical variable F (plant is an abbreviation for x′ = f, t′ = 1 & 0 ≤
x ∧ t ≤ ε). We show the proof without and with application of Opt. 1.

φ ` 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

∃r,Wrφ ` ∃F 〈f :=F 〉〈?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

〈∗〉 φ ` 〈f := ∗; ?−1 ≤ f ≤ m−x
ε
〉〈plant〉Υ+

φ ` 〈f := f+〉
〈?−1 ≤ f ≤ m−x

ε
〉〈plant〉Υ+

∃r,Wr . . .

with Opt. 1 (anticipate f = f+ from Υ+)

w/o Opt. 1

Next, we handle differential equations. Even when we can solve the differential
equation, existentially and universally quantified variables remain. Let us inspect the
corresponding proof rule from the dL calculus [31]. For differential equations we have
to prove that there exists a duration t, such that the differential equation stays within the
evolution domain H throughout all intermediate times t̃ and the result satisfies φ at the
end. At this point we have three options:

– we can instantiate the existential quantifier, if we know that the duration will be t+;
– we can introduce a new logical variable, which is the generic case that always yields

correct results, but may discover monitor specifications that are harder to evaluate;

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 207

(〈′〉)
∃T≥0

(
(∀0≤t̃≤T 〈x := y(t̃)〉H) ∧ 〈x := y(T)〉φ

)
〈x′ = θ&H〉φ

1 (QE)
QE(φ)

φ
2

1 T and t̃ are fresh logical variables and 〈x := y(T)〉 is the discrete assignment belonging to the
solution y of the differential equation with constant symbol x as symbolic initial value
2 iff φ ≡ QE(φ), φ is a first-order real arithmetic formula, QE(φ) is an equivalent quantifier-
free formula computable by [7]

– we can use quantifier elimination (QE) to obtain an equivalent quantifier-free result
(a possible optimization could inspect the size of the resulting formula).

Example 4. In the analysis of the water tank example, we solve the differential equation
(see 〈′〉) and apply the substitutions f := F and t := 0. In the next step (see ∃r,Wr), we
instantiate the existential quantifier ∃T with t+ (i. e., we choose T = t+ using Opt. 1
with the last conjunct) and use weakening right (Wr) to systematically get rid of the
existential quantifier that would otherwise still be left around by rule ∃r. Finally, we use
quantifier elimination (QE) to reveal an equivalent quantifier-free formula.

φ ` F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 ∧ ε ≥ t+ ≥ 0 ∧ Ft+ + x ≥ 0
QE φ ` ∀0≤t̃≤T (x+ f+t̃ ≥ 0 ∧ t̃ ≤ ε) ∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ = t+

∃r,Wrφ ` ∃T≥0((∀0≤t̃≤T (x+ f+t̃ ≥ 0 ∧ t̃ ≤ ε)) ∧ F = f+ ∧ (x+ = x+ FT ∧ t+ = T))
〈′〉 φ ` 〈f :=F ; t := 0〉〈{x′ = f, t′ = 1 & x ≥ 0 ∧ t ≤ ε}〉Υ+

The analysis of the specification conjecture finishes with collecting the open se-

quents from the proof to create the monitor specification χm
def≡
∧
(open sequent). The

collected open sequents may include new logical variables and new (Skolem) function
symbols that were introduced for nondeterministic assignments and differential equa-
tions when handling existential or universal quantifiers. We use the invertible quantifier
rule i∃ to re-introduce existential quantifiers for the new logical variables (universal
quantifiers for function symbols, see [27] for calculus details). Often, the now quanti-
fied logical variables are discovered to be equal to one of the post-state variables later
in the proof, because those variables did not change in the model after the assignment.
If this is the case, we can use proof rule ∃σ to further simplify the monitor specification
by substituting the corresponding logical variable x with its equal term θ.

(i∃)
Γ ` ∃X

(∧
i(Φi ` Ψi)

)
,∆

Γ, Φ1 ` Ψ1,∆ · · · Γ,Φn ` Ψn,∆
1 (∃σ)

φ(θ)

∃x (x = θ ∧ φ(x))
2

1 Among all open branches, free logical variable X only occurs in the branches Γ,Φi ` Ψi,∆
2 Logical variable x does not appear in term θ

Example 5. The two open sequents of Examples 3 and 4 use a new logical variable F
for the nondeterministic flow assignment f := ∗. After further steps in the proof, the as-
sumptions reveal additional information F = f+. Thus, we re-introduce the existential
quantifier over all the open branches (i∃) and substitute f+ for F (∃σ). The sole open

208 Stefan Mitsch, André Platzer

sequent of this proof attempt is the monitor specification χm of the water tank model.

φ ` −1 ≤ f+ ≤ m−x
ε
∧ x+ = x+ f+t+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .

∃σφ ` ∃F (−1 ≤ F ≤ m−x
ε
∧ F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .)

i∃φ ` −1 ≤ F ≤ m−x
ε

φ ` F = f+ ∧ x+ = x+ Ft+ ∧ t+ ≥ 0 ∧ x ≥ 0 . . .

3.3 Controller Monitor Synthesis

A controller monitor χc checks that two consecutive states ν and ω are reachable with
one controller execution αctrl, i. e., (ν, ω) ∈ ρ(αctrl) with Vc = BV (αctrl) ∪ FV (ψ).
We systematically derive controller monitors from formulas φ|const → 〈αctrl〉Υ+

Vc
. A

controller monitor can be used to initiate controller switching similar to Simplex [36].

Theorem 2 (Controller monitor correctness). Letα of the canonical formαctrl;αplant.
Assume |= φ→ [α∗]ψ has been proven with invariant ϕ as in (1). Let ν |= φ|const∧ϕ, as
checked by χm (Theorem 1). Furthermore, let ν̃ be a post-controller state. If (ν, ν̃) |= χc

with χc ≡ φ|const → 〈αctrl〉Υ+
Vc

then we have that (ν, ν̃) ∈ ρ(αctrl) and ν̃ |= ϕ.

3.4 Monitoring in the Presence of Expected Uncertainty and Disturbance

Up to now we considered exact ideal-world models. But real-world clocks drift, sensors
measure with some uncertainty, and actuators are subject to disturbance. This makes
the exact models safe but too conservative, which means that monitors for exact models
are likely to fall back to a fail-safe controller rather often. In this section we discuss
how we find ModelPlex specifications so that the safety property (1) and the monitor
specification become more robust to expected uncertainty and disturbance. That way,
only unexpected deviations beyond those captured in the normal operational uncertainty
and disturbance of α∗ cause the monitor to initiate fail-safe actions.

In dL, we can, for example, use nondeterministic assignment from an interval to
model sensor uncertainty and piecewise constant actuator disturbance (e. g., as in [22]),
or differential inequalities for actuator disturbance (e. g., as in [35]). Such models in-
clude nondeterminism about sensed values in the controller model and often need more
complex physics models than differential equations with polynomial solutions.

Example 6. We incorporate clock drift, sensor uncertainty and actuator disturbance into
the water tank model to express expected deviation. The measured level xs is within
a known sensor uncertainty u of the real level x (i.e. xs ∈ [x− u, x+ u]). We use
differential inequalities to model clock drift and actuator disturbance. The clock, which
wakes the controller, is slower than the real time by at most a time drift of c; it can be
arbitrarily fast. The water flow disturbance is at most d, but the water tank is allowed to
drain arbitrarily fast (even leaks when the pump is on). To illustrate different modeling
possibilities, we use additive clock drift and multiplicative actuator disturbance.

0 ≤ x ≤ m ∧ ε > 0 ∧ c < 1 ∧ 0 ≤ u ∧ 0 < d

→
[(

xs := ∗; ? (x− u ≤ xs ≤ x+ u) ; f := ∗; ?
(
−1 ≤ f ≤ m−xs−u

dε
(1− c)

)
;

t := 0; {x′ ≤ fd, 1− c ≤ t′ & x ≥ 0 ∧ t ≤ ε}
)∗]

(0 ≤ x ≤ m)

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 209

We analyze Example 6 in the same way as the previous examples, with the crucial
exception of the differential inequalities. We cannot use the proof rule 〈′〉 to analyze
this model, because differential inequalities do not have polynomial solutions. Instead,
we use the DR and DE proof rules of dL [28,29] to turn differential inequalities into a
differential-algebraic constraint form that lets us proceed with the proof. Rule DE turns
a differential inequality x′ ≤ θ into a quantified differential equation ∃d̃(x′ = d̃ & d̃ ≤
θ) with an equivalent differential-algebraic constraint. Rule DR turns a differential-
algebraic constraint E into another differential-algebraic constraint D , which implies
E , written D → E , as defined in [28] (cf. [25, App. B] for an example).

(DR)
D → E 〈D〉φ

〈E 〉φ
1 (DE)

∀X(∃d̃(X = d̃ ∧ d̃ ≤ θ ∧H)→ X ≤ θ ∧H)

〈∃d̃(x′ = d̃& d̃ ≤ θ ∧H)〉φ
〈x′ ≤ θ&H〉φ

2

1 differential refinement: differential-algebraic constraints D , E have the same changed variables
2 differential inequality elimination: special case of DR, which rephrases the differential inequal-
ities≤ as differential-algebraic constraints (accordingly for other or mixed inequalities systems).

Currently, for finding model monitors our prototype tool solves differential equa-
tions by the proof rule 〈′〉. Thus, it finds model monitor specifications for differential
algebraic equations with polynomial solutions and for differential algebraic inequali-
ties, which can be refined into solvable differential algebraic equations as in Example 6.
For prediction monitors (discussed in Section 3.5) we use dL techniques for finding dif-
ferential variants and invariants, differential cuts [28], and differential auxiliaries [30]
to handle differential equations and inequalities without polynomial solutions.

3.5 Monitoring Compliance Guarantees for Unobservable Intermediate States

With controller monitors, non-compliance of a controller implementation w.r.t. the mod-
eled controller can be detected right away. With model monitors, non-compliance of the
actual system dynamics w.r.t. the modeled dynamics can be detected when they first oc-
cur. We switch to a fail-safe action, which is verified using standard techniques, in both
non-compliance cases. The crucial question is: can such a method always guarantee
safety? The answer is linked to the image computation problem in model checking
(i. e., approximation of states reachable from a current state), which is known to be not
semi-decidable by numerical evaluation at points; approximation with uniform error
is only possible if a bound is known for the continuous derivatives [33]. This implies
that we need additional assumptions about the deviation between the actual and the
modeled continuous dynamics to guarantee compliance for unobservable intermediate
states. Unbounded deviation from the model between sample points just is unsafe, no
matter how hard a controller tries. Hence, worst-case bounds capture how well reality
is reflected in the model.

We derive a prediction monitor to check whether a current control decision will be
able to keep the system safe for time ε even if the actual continuous dynamics deviate
from the model. A prediction monitor checks the current state, because all previous
states are ensured by a model monitor and subsequent states are then safe by (1).

210 Stefan Mitsch, André Platzer

Definition 2 (ε-bounded plant with disturbance δ). Let αplant be a model of the form
x′ = θ&H . An ε-bounded plant with disturbance δ, written αδplant, is a plant model
of the form x0 := 0; (f(θ, δ) ≤ x′ ≤ g(θ, δ)&H ∧ x0 ≤ ε) for some f , g with fresh
variable ε > 0 and assuming x′0 = 1. We say that disturbance δ is constant if x 6∈ δ; it
is additive if f(θ, δ) = θ − δ and g(θ, δ) = θ + δ.

Theorem 3 (Prediction monitor correctness). Let α∗ be provably safe, i. e., |= φ→
[α∗]ψ has been proved using invariant ϕ as in (1). Let Vp = BV (α) ∪ FV ([α]ϕ).
Let ν |= φ|const ∧ ϕ, as checked by χm from Theorem 1. Further assume ν̃ such that
(ν, ν̃) ∈ ρ(αctrl), as checked by χc from Theorem 2. If (ν, ν̃) |= χp with χp ≡ (φ|const ∧
ϕ)→ 〈αctrl〉(Υ+

Vp
∧ [αδplant]ϕ), then we have for all (ν̃, ω) ∈ ρ(αδplant) that ω |= ϕ.

Remark 2. By adding a controller execution 〈αctrl〉 prior to the disturbed plant model,
we synthesize prediction monitors that take the actual controller decisions into account.
For safety purposes, we could just as well use a monitor definition without controller
χp ≡ (φ|const ∧ ϕ) → [αδplant]ϕ. But doing so results in a conservative monitor, which
has to keep the CPS safe without knowledge of the actual controller decision.

3.6 Decidability and Computability

One useful characteristic of ModelPlex beyond soundness is that monitor synthesis is
computable, which yields a synthesis algorithm, and that the correctness of those syn-
thesized monitors w.r.t. their specification is decidable, cf. Theorem 4.

Theorem 4 (Monitor correctness is decidable and monitor synthesis computable).
We assume canonical models of the form α ≡ αctrl;αplant without nested loops, with

solvable differential equations in αplant and disturbed plants αδplant with constant ad-
ditive disturbance δ (see Def. 2). Then, monitor correctness is decidable, i. e., the for-
mulas χm → 〈α〉Υ+

V , χc → 〈αctrl〉Υ+
V , and χp → 〈α〉(Υ+

V ∧ [αδplant]φ) are decid-
able. Also, monitor synthesis is computable, i. e., the functions synthm : 〈α〉Υ+

V 7→ χm,
synthc : 〈αctrl〉Υ+

V 7→ χc, and synthp : 〈α〉(Υ
+
V ∧ [αδplant]φ) 7→ χp are computable.

4 Evaluation

We developed a software prototype, integrated into our modeling tool Sphinx [24], to
automate many of the described steps. The prototype generates χm, χc, and χp conjec-
tures from hybrid programs, collects open sequents, and interacts with KeYmaera [34].

To evaluate our method, we created monitors for prior case studies of non-determin-
istic hybrid models of autonomous cars, train control systems, and robots (adaptive
cruise control [18], intelligent speed adaptation [23], the European train control sys-
tem [35], and ground robot collision avoidance [22]). Table 2 summarizes the evalua-
tion. For the model, we list the dimension in terms of the number of function symbols
and state variables, and the size of the safety proof (i. e., number of proof steps and
branches). For the monitor, we list the dimension of the monitor conjecture in terms of
the number of variables, compare the number of steps and open sequents when deriving

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 211

Table 2: Monitor complexity case studies
Case Study Model Monitor

dim. proof size dim. steps (open seq.) proof steps size

(branches) w/ Opt. 1 auto (branches)

χ
m

Water tank 5 38 (4) 3 16 (2) 20 (2) 64 (5) 32
Cruise control [18] 11 969 (124) 7 127 (13) 597 (21) 19514 (1058) 1111
Speed limit [23] 9 410 (30) 6 487 (32) 5016 (126) 64311 (2294) 19850

χ
c

Water tank 5 38 (4) 1 12 (2) 14 (2) 40 (3) 20
Cruise control [18] 11 969 (124) 7 83 (13) 518 (106) 5840 (676) 84
Robot [22] 14 3350 (225) 11 94 (10) 1210 (196) 26166 (2854) 121
ETCS safety [35] 16 193 (10) 13 162 (13) 359 (37) 16770 (869) 153

χ
p Water tank 8 80 (6) 1 135 (4) N/A 307 (12) 43

http://www.cs.cmu.edu/˜smitsch/resource/modelplex_study.zip

the monitor using manual proof steps to apply Opt. 1 and fully automated w/o Opt. 1,
and the number of steps in the monitor correctness proof. Finally, we list the monitor
size in terms of arithmetic, comparison, and logical operators in the monitor formula.
Although the number of steps and open sequents differ significantly between manual
interaction for Opt. 1 and fully automated synthesis, the synthesized monitors are log-
ically equivalent. But applying Opt. 1 usually results in structurally simpler monitors,
because the conjunction over a smaller number of open sequents (cf. Table 2) can still
be simplified automatically. The model monitors for cruise control and speed limit con-
trol are significantly larger than the other monitors, because their size already prevents
automated simplification by Mathematica. As future work, KeYmaera will be adapted
to allow user-defined tactics in order to apply Opt. 1 automatically.

5 Related Work

Runtime verification and monitoring for finite state discrete systems has received sig-
nificant attention (e. g., [9,14,20]). Other approaches monitor continuous-time signals
(e. g., [10,26]). We focus on hybrid systems models of CPS to combine both.

Several tools for formal verification of hybrid systems are actively developed (e. g.,
SpaceEx [12], dReal [13], extended NuSMV/MathSat [6]). For monitor synthesis, how-
ever, ModelPlex crucially needs the rewriting capabilities and flexibility of (nested) [α]
and 〈α〉 modalities in dL [29] and KeYmaera [34]; it is thus an interesting question for
future work if other tools could be adapted to ModelPlex.

Runtime verification is the problem of checking whether or not a trace produced by
a program satisfies a particular formula (cf. [16]). In [40], a method for runtime veri-
fication of LTL formulas on abstractions of concrete traces of a flight data recorder is
presented. The RV system for Java programs [21] predicts execution traces from actual
traces to find concurrency errors offline (e. g., race conditions) even if the actual trace
did not exhibit the error. We, instead, use prediction on the basis of disturbed plant mod-

http://www.cs.cmu.edu/~smitsch/resource/modelplex_study.zip

212 Stefan Mitsch, André Platzer

els for hybrid systems at runtime to ensure safety for future behavior of the system and
switch to a fail-safe fallback controller if necessary. Adaptive runtime verification [4]
uses state estimation to reduce monitoring overhead by sampling while still maintain-
ing accuracy with Hidden Markov Models, or more recently, particle filtering [15] to
fill the sampling gaps. The authors present interesting ideas for managing the overhead
of runtime monitoring, which could be beneficial to transfer into the hybrid systems
world. The approach, however, focuses purely on the discrete part of CPS.

The Simplex architecture [36] (and related approaches, e. g., [1,3,17]) is a control
system principle to switch between a highly reliable and an experimental controller at
runtime. Highly reliable control modules are assumed to be verified with some other
approach. Simplex focuses on switching when timing faults or violation of controller
specification occur. Our method complements Simplex in that (i) it checks whether or
not the current system execution fits the entire model, not just the controller; (ii) it sys-
tematically derives provably correct monitors for hybrid systems; (iii) it uses prediction
to guarantee safety for future behavior of the system.

Further approaches with interesting insights on combined verification and moni-
tor/controller synthesis for discrete systems include, for instance, [2,11].

Although the related approaches based on offline verification derive monitors and
switching conditions from models, none of them validates whether or not the model is
adequate for the current execution. Thus, they are vulnerable to deviation between the
real world and the model. In summary, this paper addresses safety at runtime as follows:

– Unlike [36], who focus on timing faults and specification violations, we propose a
systematic principle to derive monitors that react to any deviation from the model.

– Unlike [4,15,17,21], who focus on the discrete aspects of CPS, we use hybrid sys-
tem models with differential equations to address controller and plant.

– Unlike [17,36], who assume that fail-safe controllers have been verified with some
other approach and do not synthesize code, we can use the same technical approach
(dL) for verifying controllers and synthesizing provably correct monitors.

– ModelPlex combines the leight-weight monitors and runtime compliance of online
runtime verification with the design time analysis of offline verification.

– ModelPlex synthesizes provably correct monitors, certified by a theorem prover
– To the best of our knowledge, our approach is the first to guarantee that verification

results about a hybrid systems model transfer to a particular execution of the system
by verified runtime validation. We detect deviation from the verified model when
it first occurs and, given bounds, can guarantee safety with fail-safe fallback. Other
approaches (e. g., [3,17,36]) assume the system perfectly complies with the model.

6 Conclusion

ModelPlex is a principle to build and verify high-assurance controllers for safety-critical
computerized systems that interact physically with their environment. It guarantees that
verification results about CPS models transfer to the real system by safeguarding against
deviations from the verified model. Monitors created by ModelPlex are provably correct
and check at runtime whether or not the actual behavior of a CPS complies with the
verified model and its assumptions. Upon noncompliance, ModelPlex initiates fail-safe

ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models 213

fallback strategies. In order to initiate those strategies early enough, ModelPlex uses
prediction on the basis of disturbed plant models to check safety for the next control
cycle. This way, ModelPlex ensures that verification results about a model of a CPS
transfer to the actual system behavior at runtime.

Future research directions include extending ModelPlex with advanced dL proof
rules for differential equations [31], so that differential equations without polynomial
solutions, as we currently handle for prediction monitor synthesis, can be handled for
model monitor synthesis as well. An interesting question for certification purposes is
end-to-end verification from the model to the final machine code.

References

1. Aiello, A.M., Berryman, J.F., Grohs, J.R., Schierman, J.D.: Run-time assurance for advanced
flight-critical control systems. In: AIAA Guidance, Nav. and Control Conf. AIAA (2010)

2. Alur, R., Bodı́k, R., Juniwal, G., Martin, M.M.K., Raghothaman, M., Seshia, S.A., Singh, R.,
Solar-Lezama, A., Torlak, E., Udupa, A.: Syntax-guided synthesis. In: FMCAD. pp. 1–17.
IEEE (2013)

3. Bak, S., Greer, A., Mitra, S.: Hybrid cyberphysical system verification with Simplex using
discrete abstractions. In: Caccamo, M. (ed.) IEEE Real-Time and Embedded Technology and
Applications Symposium. pp. 143–152. IEEE Computer Society (2010)

4. Bartocci, E., Grosu, R., Karmarkar, A., Smolka, S.A., Stoller, S.D., Zadok, E., Seyster, J.:
Adaptive runtime verification. In: Qadeer, S., Tasiran, S. (eds.) RV. LNCS, vol. 7687, pp.
168–182. Springer (2012)

5. Blech, J.O., Falcone, Y., Becker, K.: Towards certified runtime verification. In: Aoki, T.,
Taguchi, K. (eds.) ICFEM. LNCS, vol. 7635, pp. 494–509. Springer (2012)

6. Cimatti, A., Mover, S., Tonetta, S.: SMT-based scenario verification for hybrid systems.
Formal Methods in System Design 42(1), 46–66 (2013)

7. Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimina-
tion. J. Symb. Comput. 12(3), 299–328 (1991)

8. Daigle, M.J., Roychoudhury, I., Biswas, G., Koutsoukos, X.D., Patterson-Hine, A., Poll,
S.: A comprehensive diagnosis methodology for complex hybrid systems: A case study on
spacecraft power distribution systems. IEEE Transactions on Systems, Man, and Cybernet-
ics, Part A 40(5), 917–931 (2010)

9. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: LOLA: Runtime monitoring of synchronous systems. In:
TIME. pp. 166–174. IEEE Computer Society (2005)

10. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N.,
Veith, H. (eds.) CAV. LNCS, vol. 8044, pp. 264–279. Springer (2013)

11. Ehlers, R., Finkbeiner, B.: Monitoring realizability. In: Khurshid, S., Sen, K. (eds.) RV.
LNCS, vol. 7186, pp. 427–441. Springer (2011)

12. Frehse, G., Guernic, C.L., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A.,
Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV. LNCS, vol. 6806, pp. 379–395. Springer (2011)

13. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals.
In: Bonacina, M.P. (ed.) CADE. LNCS, vol. 7898, pp. 208–214. Springer (2013)

14. Havelund, K., Rosu, G.: Efficient monitoring of safety properties. STTT 6(2), 158–173
(2004)

15. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with
particle filtering. In: Legay, A., Bensalem, S. (eds.) RV. LNCS, vol. 8174. Springer (2013)

214 Stefan Mitsch, André Platzer

16. Leucker, M., Schallhart, C.: A brief account of runtime verification. J. Log. Algebr. Program.
78(5), 293–303 (2009)

17. Liu, X., Wang, Q., Gopalakrishnan, S., He, W., Sha, L., Ding, H., Lee, K.: ORTEGA: An
efficient and flexible online fault tolerance architecture for real-time control systems. IEEE
Trans. Industrial Informatics 4(4), 213–224 (2008)

18. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: Hybrid, distributed, and now
formally verified. In: Butler, M., Schulte, W. (eds.) FM. LNCS, vol. 6664. Springer (2011)

19. McIlraith, S.A., Biswas, G., Clancy, D., Gupta, V.: Hybrid systems diagnosis. In: Lynch,
N.A., Krogh, B.H. (eds.) HSCC. LNCS, vol. 1790, pp. 282–295. Springer (2000)

20. Meredith, P.O., Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime
verification framework. STTT 14(3), 249–289 (2012)

21. Meredith, P.O., Rosu, G.: Runtime verification with the RV system. In: Barringer, H., Fal-
cone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G.J., Rosu, G., Sokolsky, O., Tillmann,
N. (eds.) RV. LNCS, vol. 6418, pp. 136–152. Springer (2010)

22. Mitsch, S., Ghorbal, K., Platzer, A.: On provably safe obstacle avoidance for autonomous
robotic ground vehicles. In: Robotics: Science and Systems (2013)

23. Mitsch, S., Loos, S.M., Platzer, A.: Towards formal verification of freeway traffic control.
In: Lu, C. (ed.) ICCPS. pp. 171–180. IEEE (2012)

24. Mitsch, S., Passmore, G.O., Platzer, A.: Collaborative verification-driven engineering of hy-
brid systems. J. Math. in Computer Science (2014)

25. Mitsch, S., Platzer, A.: ModelPlex: Verified runtime validation of verified cyber-physical
system models. Tech. Rep. CMU-CS-14-121, Carnegie Mellon (2014)

26. Nickovic, D., Maler, O.: AMT: A property-based monitoring tool for analog systems. In:
Raskin, J.F., Thiagarajan, P.S. (eds.) FORMATS. pp. 304–319. LNCS, Springer (2007)

27. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reas. 41(2), 143–189
(2008)

28. Platzer, A.: Differential-algebraic dynamic logic for differential-algebraic programs. J. Log.
Comput. 20(1), 309–352 (2010), advance Access published on November 18, 2008

29. Platzer, A.: Logical Analysis of Hybrid Systems. Springer (2010)
30. Platzer, A.: The structure of differential invariants and differential cut elimination. Logical

Methods in Computer Science 8(4) (2011)
31. Platzer, A.: The complete proof theory of hybrid systems. In: LICS. IEEE (2012)
32. Platzer, A.: Logics of dynamical systems. In: LICS. pp. 13–24. IEEE (2012)
33. Platzer, A., Clarke, E.M.: The image computation problem in hybrid systems model check-

ing. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC. LNCS, Springer (2007)
34. Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Ar-

mando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR. LNCS, vol. 5195. Springer (2008)
35. Platzer, A., Quesel, J.D.: European Train Control System: A case study in formal verification.

In: Breitman, K., Cavalcanti, A. (eds.) ICFEM. LNCS, vol. 5885. Springer (2009)
36. Seto, D., Krogh, B., Sha, L., Chutinan, A.: The Simplex architecture for safe online control

system upgrades. In: American Control Conference. pp. 3504–3508 (1998)
37. Shannon, C.: Communication in the presence of noise. Proc. of the IRE 37(1), 10–21 (1949)
38. Srivastava, A.N., Schumann, J.: Software health management: a necessity for safety critical

systems. ISSE 9(4), 219–233 (2013)
39. Wang, D., Yu, M., Low, C.B., Arogeti, S.: Model-based Health Monitoring of Hybrid Sys-

tems. Springer (2013)
40. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under recording

uncertainty. In: Khurshid, S., Sen, K. (eds.) RV. pp. 442–456. LNCS, Springer (2011)
41. Zhao, F., Koutsoukos, X.D., Haussecker, H.W., Reich, J., Cheung, P.: Monitoring and fault

diagnosis of hybrid systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B
35(6), 1225–1240 (2005)

	ModelPlex: Verified Runtime Validation of Verified Cyber-Physical System Models

