19: Verified Models & Verified Runtime Validation Logical Foundations of Cyber-Physical Systems

Stefan Mitsch

- Learning Objectives
- Fundamental Runtime Safety Challenges
- 3 Simultaneous Model Validation and Proof Transfer
- Model Validation
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Learning Objectives

- 2 Fundamental Runtime Safety Challenges
- 3 Simultaneous Model Validation and Proof Transfer
- 4 Model Validation
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Learning Objectives Verified Models & Verified Runtime Safety

proof in a model vs. truth in reality tracing assumptions turning provers upside down correct-by-construction dynamic contracts proofs for CPS implementations ′M&C CPS models vs. reality tame CPS complexity inevitable differences runtime validation model compliance online monitor architectural design prediction vs. run

Learning Objectives

Fundamental Runtime Safety Challenges

- 3 Simultaneous Model Validation and Proof Transfer
- 4 Model Validation
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Proposition (System Proved Safe)

 $A \rightarrow [(\mathit{ctrl}; \mathit{plant})^*]S$

A Proof, so can't forget condition

Proposition (System Proved Safe) $A \rightarrow [(ctrl; plant)^*]S$ Wrong? S Right answer to wrong question

A Proof, so can't forget condition
Unsatisfiable

Stefan Mitsch, André Platzer (CMU)

Proposition (System Proved Safe)

- S Right answer to wrong question
- A Proof, so can't forget condition
 - Unsatisfiable
 - Too picky to turn on

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

- S Right answer to wrong question
- A Proof, so can't forget condition
 - Unsatisfiable
 - Too picky to turn on
- ctrl Proof, so all behavior correct

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

- S Right answer to wrong question
- A Proof, so can't forget condition
 - Unsatisfiable
 - Too picky to turn on
- ctrl Proof, so all behavior correct
 - Empty behavior

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

- S Right answer to wrong question
- A Proof, so can't forget condition
 - Unsatisfiable
 - Too picky to turn on
- ctrl Proof, so all behavior correct
 - Empty behavior
 - Model vs. control implementation

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Models Predictions need models!

- S Right answer to wrong question
- A Proof, so can't forget condition
 - Unsatisfiable
 - Too picky to turn on
- ctrl Proof, so all behavior correct
 - Empty behavior
 - Model vs. control implementation
- plant Proof, so all behavior correct
 - No runs
 - Plant model vs. real physics

Learning Objectives

Fundamental Runtime Safety Challenges

3 Simultaneous Model Validation and Proof Transfer

- Model Validation
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Proposition (System Proved Safe)

 $A \rightarrow [(\mathit{ctrl}; \mathit{plant})^*]S$

Proposition (System Proved Safe)

$$A \rightarrow [(ctrl; plant)^*]S$$

- Veto turns CPS off
- S Too late to monitor CPS already unsafe!

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Synthesize or Monitor

- A Monitor easy if measurable Veto turns CPS off
- S Too late to monitor CPS already unsafe!
- ctrl Refinement proofs

Proposition (System Proved Safe)

 $A \rightarrow [(ctrl; plant)^*]S$

Synthesize or Monitor

- A Monitor easy if measurable Veto turns CPS off
- S Too late to monitor CPS already unsafe!
- *ctrl* Refinement proofs Monitor each control decision Veto overrides decision

Proposition (System Proved Safe)

 $A \rightarrow [(\mathit{ctrl}; \mathit{plant})^*]S$

Monitor Verified runtime validation!

- A Monitor easy if measurable Veto turns CPS off
- S Too late to monitor CPS already unsafe!
- *ctrl* Refinement proofs Monitor each control decision Veto overrides decision
- *plant* No source code for physics Observe and compare Veto triggers best fallback

Monitors must be correct

Model Validation and Proof Transfer

Ensure that verification results about models apply to CPS implementations

Learning Objectives

- 2 Fundamental Runtime Safety Challenges
- 3 Simultaneous Model Validation and Proof Transfer

Model Validation

- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Model Validation

Model Validation

Model Validation

Proposition (Can bounce around safely)

$$A
ightarrow [ig(\{ x' = v, v' = -g \,\&\, x \geq 0 \}; (?x = 0; v := -cv \cup ?x \neq 0) ig)^*]S$$

Proposition (Can bounce around safely)

$$A \rightarrow [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Controller Monitor)

control changes
$$(x, v)$$
 to (x^+, v^+)

Proposition (Can bounce around safely)

$$A \to [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \neq 0))^*]S$$

Proposition (Can bounce around safely)

$$A \rightarrow [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Proposition (Can bounce around safely)

$$A \to [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Example (Plant Monitor)

Proposition (Can bounce around safely)

$$A \to [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Example (Plant Monitor)

Proposition (Can bounce around safely)

$$A \rightarrow [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Proposition (Can bounce around safely)

$$A \rightarrow [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Proposition (Can bounce around safely)

 $A \rightarrow [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Example (Plant Monitor) $v^+ = v - g \cdot \Delta t \wedge x^+ = x + v \cdot \Delta t - \frac{g}{2} (\Delta t)^2 \wedge \Delta t \ge 0 \wedge x \ge 0 \wedge x^+ \ge 0$

Example (Model Monitor, combines controller and plant monitor)

Proposition (Can bounce around safely)

$$A
ightarrow [(\{x'=v,v'=-g\&x\geq 0\}; (?x=0;v:=-cv\cup?x
eq 0))^*]S$$

substitute in

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Example (Plant Monitor) $v^+ = v - g \cdot \Delta t \wedge x^+ = x + v \cdot \Delta t - \frac{g}{2} (\Delta t)^2 \wedge \Delta t \ge 0 \wedge x \ge 0 \wedge x^+ \ge 0$

Example (Model Monitor, combines controller and plant monitor)

$$\wedge x^+ = x + v \cdot \Delta t - \frac{g}{2} (\Delta t)^2 \wedge x \ge 0 \wedge x^+ \ge 0$$

Proposition (Can bounce around safely)

$$A
ightarrow [(\{x'=v,v'=-g\&x\geq 0\};(?x=0;v:=-cv\cup?x
eq 0))^*]S$$

substitute in

Example (Controller Monitor) $(x = 0 \land v^+ = -cv \lor x > 0 \land v^+ = v) \land x^+ = x$

Example (Plant Monitor)

$$\mathbf{v}^+ = \mathbf{v} - \mathbf{g} \cdot \Delta t \wedge x^+ = x + \mathbf{v} \cdot \Delta t - \frac{g}{2} (\Delta t)^2 \wedge \Delta t \ge 0 \wedge x \ge 0 \wedge x^+ \ge 0$$

Proposition (Can bounce around safely)

$$A \to [(\{x' = v, v' = -g \& x \ge 0\}; (?x = 0; v := -cv \cup ?x \ne 0))^*]S$$

Example (Model Monitor, combines controller and plant monitor)

$$\wedge x^{+} = x + v \cdot \Delta t - \frac{g}{2} (\Delta t)^{2} \wedge x \ge 0 \wedge x^{+} \ge 0$$

Outline

Learning Objectives

- 2 Fundamental Runtime Safety Challenges
- 3 Simultaneous Model Validation and Proof Transfer

Model Validation

5 Provably Correct Monitor Synthesis

- Logical State Relations
- Correct-by-Construction Synthesis
- Controller Monitors
- Prediction Monitors

Summary

dL proof calculus executes models symbolically

Stefan Mitsch, André Platzer (CMU)

Correct-by-Construction Synthesis

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → finish proof at runtime

Correct-by-Construction Synthesis

Monitor:
$$P_1(x, x^+) \lor P_2(x, x^+)$$

 The subgoals that cannot be proved express all the conditions on the relations of variables imposed by the model → finish proof at runtime

Typical (ctrl; plant)* models can check earlier

Theorem (Controller Monitor Correctness)

Controller safe and in plant bounds as long as monitor satisfied

(FMSD'16)

Theorem (Controller Monitor Correctness)

Controller safe and in plant bounds as long as monitor satisfied

(FMSD'16)

Outline

Safe despite evolution with disturbance?

LFCPS/19: Verified Models & Verified Runtime Validation

Offline

Logical dL:
$$(\omega, v) \models \langle \operatorname{ctrl} \rangle (x = x^+ \land [\operatorname{plant}]J)$$

 $\uparrow dL \operatorname{proof}$
Arithmetical: $(\omega, v) \models P(x, x^+)$
Invariant *J* implies safety *S*
(known from safety proof)

Outline

Learning Objectives

- 2 Fundamental Runtime Safety Challenges
- 3 Simultaneous Model Validation and Proof Transfer
- 4 Model Validation
- 5 Provably Correct Monitor Synthesis
 - Logical State Relations
 - Correct-by-Construction Synthesis
 - Controller Monitors
 - Prediction Monitors

Summary

Summary

Simultaneous model validation and proof transfer safeguards real CPS

- Validate model compliance
- Characterize compliance with model in logic
- Prover transforms compliance formula to executable monitor
- Model validation and proof transfer by offline + online proof

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

Form. Methods Syst. Des., 49(1-2):33–74, 2016. Special issue of selected papers from RV'14. doi:10.1007/s10703-016-0241-z.

Stefan Mitsch and André Platzer.

ModelPlex: Verified runtime validation of verified cyber-physical system models.

In Borzoo Bonakdarpour and Scott A. Smolka, editors, *RV*, volume 8734 of *LNCS*, pages 199–214. Springer, 2014. doi:10.1007/978-3-319-11164-3_17.

Stefan Mitsch and André Platzer.

Verified runtime validation for partially observable hybrid systems.

CoRR, abs/1811.06502, 2018.

URL: http://arxiv.org/abs/1811.06502,

arXiv:1811.06502.