10: Differential Equations \& Differential Invariants

Logical Foundations of Cyber-Physical Systems

Stefan Mitsch

(5) Comegie Mellon University

Outline

(1) Learning Objectives
(2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs

4 Soundness Proof
(5) Summary

Outline

(1) Learning Objectives

2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs

4 Soundness Proof
(3) Summary

Learning Objectives

discrete vs. continuous analogies rigorous reasoning about ODEs induction for differential equations differential facet of logical trinity

understanding continuous dynamics relate discrete+continuous
semantics of ODEs operational CPS effects

Differential Facet of Logical Trinity

Syntax defines the notation
What problems are we allowed to write down?
Semantics what carries meaning.
What real or mathematical objects does the syntax stand for?
Axiomatics internalizes semantic relations into universal syntactic transformations.
How does the semantics of $e=\tilde{e}$ relate to the semantics of $e-\tilde{e}=0$, syntactically? What about derivatives?

Outline

(1) Learning Objectives

(2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs
(4) Soundness Proof
(5) Summary

ODE
$x^{\prime}=1, x(0)=x_{0}$
$x^{\prime}=5, x(0)=x_{0}$
$x^{\prime}=x, x(0)=x_{0}$
$x^{\prime}=x^{2}, x(0)=x_{0}$
$x^{\prime}=\frac{1}{x}, x(0)=1$
$y^{\prime}(x)=-2 x y, y(0)=1$
$x^{\prime}(t)=t x, x(0)=x_{0}$
$x^{\prime}=\sqrt{x}, x(0)=x_{0}$
$x^{\prime}=y, y^{\prime}=-x, x(0)=0, y(0)=1$
$x^{\prime}=1+x^{2}, x(0)=0$
$x^{\prime}(t)=\frac{2}{3^{3}} x(t)$
$x^{\prime}=x^{2}+x^{4}$
$x^{\prime}(t)=e^{t^{2}}$

Solution
$x(t)=x_{0}+t$
$x(t)=x_{0}+5 t$
$x(t)=x_{0} e^{t}$
$x(t)=\frac{x_{0}}{1-t x_{0}}$
$x(t)=\sqrt{1+2 t} \ldots$
$y(x)=e^{-x^{2}}$
$x(t)=x_{0} e^{t^{2}}$
$x(t)=\frac{t^{2}}{4} \pm t \sqrt{x_{0}}+x_{0}$
$x(t)=\sin t, y(t)=\cos t$
$x(t)=\tan t$
$x(t)=e^{-\frac{1}{t^{2}}}$ non-analytic
???
non-elementary

Global Descriptive Power of Local Differential Equations

Descriptive power of differential equations

- Descriptive power: differential equations characterize continuous evolution only locally by the respective directions.
(3) Simple differential equations describe complicated physical processes.
- Complexity difference between local description and global behavior
- Analyzing ODEs via their solutions undoes their descriptive power.
- Let's exploit descriptive power of ODEs for proofs!

$$
\begin{aligned}
x^{\prime \prime} & =-x & & x(t)=\sin (t)=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\frac{t^{9}}{9!}-\ldots \\
x^{\prime \prime}(t) & =e^{t^{2}} & & \text { no elementary closed-form solution }
\end{aligned}
$$

Global Descriptive Power of Local Differential Equations

You also prefer loop induction to unfolding all loop iterations, globally ...

Descriptive power of differential equations

(1) Descriptive power: differential equations characterize continuous evolution only locally by the respective directions.
(3) Simple differential equations describe complicated physical processes.

- Complexity difference between local description and global behavior
- Analyzing ODEs via their solutions undoes their descriptive power.
- Let's exploit descriptive power of ODEs for proofs!

$$
\begin{aligned}
x^{\prime \prime} & =-x & & x(t)=\sin (t)=t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\frac{t^{7}}{7!}+\frac{t^{9}}{9!}-\ldots \\
x^{\prime \prime}(t) & =e^{t^{2}} & & \text { no elementary closed-form solution }
\end{aligned}
$$

Intuition for Differential Invariants

Differential Invariant

$$
\frac{\Gamma \vdash F, \Delta \quad F \vdash ? ? ? F \quad F \vdash P}{\Gamma \vdash\left[x^{\prime}=f(x)\right] P, \Delta}
$$

Intuition for Differential Invariants

Differential Invariant

$$
\frac{\Gamma \vdash F, \Delta \quad F \vdash ? ? ? F \quad F \vdash P}{\Gamma \vdash\left[x^{\prime}=f(x)\right] P, \Delta}
$$

Intuition for Differential Invariants

Differential Invariant

$$
\frac{\Gamma \vdash F, \Delta \quad F \vdash ? ? ? F \quad F \vdash P}{\Gamma \vdash\left[x^{\prime}=f(x)\right] P, \Delta}
$$

Intuition for Differential Invariants

Differential Invariant

$$
\frac{\Gamma \vdash F, \Delta \quad F \vdash ? ? ? F \quad F \vdash P}{\Gamma \vdash\left[x^{\prime}=f(x)\right] P, \Delta}
$$

Want: formula F remains true in the direction of the dynamics

$$
\left[^{\prime}\right]\left[x^{\prime}=f(x)\right] P \leftrightarrow \forall t \geq 0[x:=y(t)] P \quad\left(y^{\prime}=f(y), y(0)=x\right)
$$

Next step is undefined for ODEs. But don't need to know where exactly the system evolves to. Just that it remains somewhere in F. Show: only evolves into directions in which formula F stays true.

Guiding Example

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

Outline

(1) Learning Objectives
(2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs
(4) Soundness Proof
(5) Summary

Syntax With Primes

Syntax $e::=x|c| e+k|e-k| e \cdot k \mid e / k$

Syntax With Primes

Syntax $e::=x|c| e+k|e-k| e \cdot k \mid e / k$

$$
\begin{aligned}
(e+k)^{\prime} & =(e)^{\prime}+(k)^{\prime} \\
(e-k)^{\prime} & =(e)^{\prime}-(k)^{\prime} \\
(e \cdot k)^{\prime} & =(e)^{\prime} \cdot k+e \cdot(k)^{\prime} \\
(e / k)^{\prime} & =\left((e)^{\prime} \cdot k-e \cdot(k)^{\prime}\right) / k^{2} \\
(c())^{\prime} & =0
\end{aligned}
$$

for constants/numbers $c()$

Syntax With Primes

Syntax $e::=x|c| e+k|e-k| e \cdot k \mid e / k$

$$
\begin{array}{rlr}
(e+k)^{\prime} & =(e)^{\prime}+(k)^{\prime} & \\
(e-k)^{\prime} & =(e)^{\prime}-(k)^{\prime} & \\
(e \cdot k)^{\prime} & =(e)^{\prime} \cdot k+e \cdot(k)^{\prime} & \\
(e / k)^{\prime} & =\left((e)^{\prime} \cdot k-e \cdot(k)^{\prime}\right) / k^{2} & \\
\text { Derivatives same singularities } \\
(c())^{\prime} & =0 & \text { for constants/numbers } c()
\end{array}
$$

Syntax With Primes

Syntax $e::=x|c| e+k|e-k| e \cdot k \mid e / k$

$$
\begin{array}{rlr}
(e+k)^{\prime} & =(e)^{\prime}+(k)^{\prime} \\
(e-k)^{\prime} & =(e)^{\prime}-(k)^{\prime} & \\
(e \cdot k)^{\prime} & =(e)^{\prime} \cdot k+e \cdot(k)^{\prime} & \\
(e / k)^{\prime} & =\left((e)^{\prime} \cdot k-e \cdot(k)^{\prime}\right) / k^{2} & \\
\text { Derivatives same singularities } \\
(c())^{\prime} & =0 & \text { for constants/numbers } c()
\end{array}
$$

... What do these primes mean? ...

Syntax With Primes

Syntax $e::=x|c| e+k|e-k| e \cdot k|e / k| x^{\prime} \mid(e)^{\prime}$

internalize primes into dL syntax

$$
\begin{array}{rlrl}
(e+k)^{\prime} & =(e)^{\prime}+(k)^{\prime} & \\
(e-k)^{\prime} & =(e)^{\prime}-(k)^{\prime} & & \\
(e \cdot k)^{\prime} & =(e)^{\prime} \cdot k+e \cdot(k)^{\prime} & & \\
(e / k)^{\prime} & =\left((e)^{\prime} \cdot k-e \cdot(k)^{\prime}\right) / k^{2} & & \text { same singularities } \\
(c())^{\prime} & =0 & & \text { for constants/numbers } c()
\end{array}
$$

... What do these primes mean? ...

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=$

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \omega \llbracket e \rrbracket}{\mathrm{~d} t}$

The Meaning of Primes
Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \omega \llbracket e \rrbracket}{\mathrm{~d} t}$
what's the time derivative?

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \omega \llbracket e \rrbracket}{\mathrm{~d} t}$

what's the time derivative?
what's the time?

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \omega \llbracket e \rrbracket}{\mathrm{~d} t}$ nonsense!
what's the time derivative?
depends on the differential equation?

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=$

what's the time derivative? depends on the differential equation? Not compositional!

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=$

what's the time derivative?
depends on the differential equation? Not compositional! well-defined in isolated state ω at all?

The Meaning of Primes

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=$

what's the time derivative?
depends on the differential equation? Not compositional! well-defined in isolated state ω at all? No time-derivative without time!

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$
what's the time derivative?
depends on the differential equation? well-defined in isolated state ω at all? meaning is a function of x and x^{\prime}.
what's the time?
Not compositional!
No time-derivative without time!
Differential form!

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Partial $\frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)=\lim _{\kappa \rightarrow \omega(x)} \frac{\omega_{x}^{K} \llbracket e \rrbracket-\omega \llbracket e \rrbracket}{\kappa-\omega(x)}$

$$
\rightarrow \mathbb{R}
$$

Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics)
 ([.]: HP $\rightarrow \wp(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{(\omega, v): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a solution $\varphi:[0, r] \rightarrow \mathscr{S}$ of any duration $r \in \mathbb{R}$ with $\varphi(0)=\omega$ and $\varphi(r)=v\}$ where $\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def }}{=} \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{dt}}(z)$

Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics)

$(I \cdot]: \mathrm{HP} \rightarrow \delta(\mathscr{S} \times \mathscr{A}))$

$\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{(\omega, v): \varphi(z) \models x^{\prime}=f(x) \wedge Q\right.$ for all $0 \leq z \leq r$ for a solution $\varphi:[0, r] \rightarrow \mathscr{S}$ of any duration $r \in \mathbb{R}$ with $\varphi(0)=\omega$ except on x^{\prime} and $\left.\varphi(r)=v\right\}$ where $\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def }}{=} \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{dt}}(z)$

Initial value of x^{\prime} in ω is irrelevant since defined by ODE. Final value of x^{\prime} is carried over to the final state v.

Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics)

$(\llbracket \cdot \rrbracket: H P \rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{(\omega, v): \varphi(z) \models x^{\prime}=f(x) \wedge Q\right.$ for all $0 \leq z \leq r$ for a solution $\varphi:[0, r] \rightarrow \mathscr{S}$ of any duration $r \in \mathbb{R}$ with $\varphi(0)=\omega$ except on x^{\prime} and $\left.\varphi(r)=v\right\}$ where $\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \varphi(t)(x)}{=}(z)$

Initial value of x^{\prime} in ω is irrelevant since defined by ODE. Final value of x^{\prime} is carried over to the final state v.

Differential Dynamic Logic dL: Semantics

Definition (Hybrid program semantics)

$(\llbracket \cdot \rrbracket: H P \rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{(\omega, v): \varphi(z) \models x^{\prime}=f(x) \wedge Q\right.$ for all $0 \leq z \leq r$ for a solution $\varphi:[0, r] \rightarrow \mathscr{S}$ of any duration $r \in \mathbb{R}$ with $\varphi(0)=\omega$ except on x^{\prime} and $\left.\varphi(r)=v\right\}$ where $\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def }}{=} \frac{d \varphi(t)(x)}{d t}(z)$

Initial value of x^{\prime} in ω is irrelevant since defined by ODE. Final value of x^{\prime} is carried over to the final state v.

Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:
Syntactic $^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad$ Analytic $^{\prime}$

Differential Substitution Lemmas

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$

Differential Substitution Lemmas

Lemma (Differential lemma)
(Differential value vs. Time-derivative) If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$

(Equations of Differentials)

$$
\begin{aligned}
(e+k)^{\prime} & =(e)^{\prime}+(k)^{\prime} \\
(e \cdot k)^{\prime} & =(e)^{\prime} \cdot k+e \cdot(k)^{\prime} \\
(c())^{\prime} & =0 \\
(x)^{\prime} & =x^{\prime}
\end{aligned}
$$

for constants/numbers $c()$
for variables $x \in \mathscr{V}$

Differential Substitution Lemmas

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$

$$
\mathrm{DE}\left[x^{\prime}=f(x) \& Q\right] P \leftrightarrow\left[x^{\prime}=f(x) \& Q\right]\left[x^{\prime}:=f(x)\right] P
$$

Differential Substitution Lemmas

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$

$$
\mathrm{DE}\left[x^{\prime}=f(x) \& Q\right] P \leftrightarrow\left[x^{\prime}=f(x) \& Q\right]\left[x^{\prime}:=f(x)\right] P
$$

Axiomatics

$$
\text { DI }\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0
$$

Differential Substitution Lemmas

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$

$$
\mathrm{DE}\left[x^{\prime}=f(x) \& Q\right] P \leftrightarrow\left[x^{\prime}=f(x) \& Q\right]\left[x^{\prime}:=f(x)\right] P
$$

Axiomatics

$$
\mathrm{DI}\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0
$$

Differential Invariants for Differential Equations

Differential Invariant

$$
\mathrm{dl} \frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}
$$

Differential Invariants for Differential Equations

Differential Invariant

$$
\mathrm{dl} \frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}
$$

$\mathrm{DI}\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\mathrm{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Differential Invariants for Differential Equations

Differential Invariant

dl $\frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}$
DI $\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\operatorname{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Proof (dl is a derived rule).

$$
{ }^{\text {Dl }} \overline{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}
$$

Differential Invariants for Differential Equations

Differential Invariant

dl $\frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}$
DI $\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\operatorname{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Proof (dl is a derived rule).

$$
\begin{aligned}
& \vdash\left[x^{\prime}=f(x)\right](e)^{\prime}=0 \\
& e=0 \vdash\left[x^{\prime}=f(x)\right] e=0
\end{aligned}
$$

Differential Invariants for Differential Equations

Differential Invariant

dl $\frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}$
DI $\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\operatorname{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Proof (dl is a derived rule).

$$
\begin{aligned}
& \mathrm{G} \frac{\vdash\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{} \\
& \mathrm{D} \frac{\vdash\left[x^{\prime}=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}
\end{aligned}
$$

Differential Invariants for Differential Equations

Differential Invariant

dl $\frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}$
DI $\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\operatorname{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Proof (dl is a derived rule).

$$
\mathrm{G} \frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{\vdash\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}
$$

$$
\mathrm{G} \frac{P}{[\alpha] P}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

$$
\rightarrow R^{\square}-V^{2}+W^{2}-r^{2}=0 \rightarrow\left[V^{\prime}=W, W^{\prime}=-V^{2}=W^{2}=0\right.
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

$$
\underset{\rightarrow R}{d \frac{v^{2}+w^{2}-r^{2}=0 \vdash\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0}{\vdash v^{2}+w^{2}-r^{2}=0 \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0}}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

$$
\begin{aligned}
& {[:=]} \\
& \quad \text { dl } \frac{\vdash\left[v^{\prime}:=w\right]\left[w^{\prime}:=-v\right] 2 v v^{\prime}+2 w w^{\prime}-2 r r^{\prime}=0}{v^{2}+w^{2}-r^{2}=0 \vdash\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0} \\
& \vdash v^{2}+w^{2}-r^{2}=0 \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0
\end{aligned}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

$$
\begin{array}{ll}
\mathbb{R} \\
{[:=]} & \vdash 2 v(w)+2 w(-v)=0 \\
\text { dl } \frac{\vdash\left[v^{\prime}:=w\right]\left[w^{\prime}:=-v\right] 2 v v^{\prime}+2 w w^{\prime}-2 r r^{\prime}=0}{v^{2}+w^{2}-r^{2}=0 \vdash\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0} \\
\rightarrow R^{\frac{1}{2}+w^{2}-r^{2}=0 \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}-r^{2}=0}
\end{array}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

Guiding Example: Rotational Dynamics

$$
v^{2}+w^{2}=r^{2} \rightarrow\left[v^{\prime}=w, w^{\prime}=-v\right] v^{2}+w^{2}=r^{2}
$$

Simple proof without solving ODE, just by differentiating

Example Proof

Example Proof

Example Proof

Outline

(1) Learning Objectives
(2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs
(4) Soundness Proof
(5) Summary

Differential Substitution Lemmas

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:
Syntactic $^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad$ Analytic $^{\prime}$

Soundness Proof

Lemma (Differential lemma) (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket \rrbracket \rrbracket}{\mathrm{d} t}(z)
$$

Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Definition (Hybrid program semantics)
 ([.]: HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}} \mathrm{c}, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } d \varphi(t)(x)}{=}(z)\right\}$

Soundness Proof

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)$
Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Definition (Hybrid program semantics) ([.]:HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}} \mathrm{c}, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \varphi(t)(x)}{=}(z)\right\}$

Soundness Proof

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \stackrel{\text { chain }}{=} \sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$
Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Definition (Hybrid program semantics) ([.]:HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}} \mathrm{c}, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \varphi(t)(x)}{=}(z)\right\}$

Soundness Proof

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \stackrel{\text { chain }}{=} \sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)$
Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Definition (Hybrid program semantics) ([.]:HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}} \mathrm{c}, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \mathrm{d} \varphi(t)(x)}{\mathrm{dt}}(z)\right\}$

Soundness Proof

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \stackrel{\text { chain }}{=} \sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)=\sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \varphi(z)\left(x^{\prime}\right)$
Semantics $\omega \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \omega\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\omega)$

Definition (Hybrid program semantics) ([.]:HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}} \mathrm{c}, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \mathrm{d} \varphi(t)(x)}{\mathrm{dt}}(z)\right\}$

Soundness Proof

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \stackrel{\text { chain }}{=} \sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)=\sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \varphi(z)\left(x^{\prime}\right)$
Semantics $\varphi(z) \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \varphi(z)\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z))$

Definition (Hybrid program semantics) ([.]:HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}}, \varphi, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \mathrm{d} \varphi(t)(x)}{\mathrm{dt}}(z)\right\}$

Soundness Proof

Lemma (Differential lemma) (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z)
$$

$\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \stackrel{\text { chain }}{=} \sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \frac{\mathrm{d} \varphi(t)(x)}{\mathrm{d} t}(z)=\sum_{x \in \mathscr{Y}} \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z)) \varphi(z)\left(x^{\prime}\right)$
Semantics $\varphi(z) \llbracket(e)^{\prime} \rrbracket=\sum_{x \in \mathscr{Y}} \varphi(z)\left(x^{\prime}\right) \cdot \frac{\partial \llbracket e \rrbracket}{\partial x}(\varphi(z))$

Definition (Hybrid program semantics)
 ([.]: HP $\rightarrow \delta(\mathscr{S} \times \mathscr{S}))$

$$
\llbracket x^{\prime}=f(x) \& Q \rrbracket=\left\{\left(\left.\varphi(0)\right|_{\left\{x^{\prime}\right\}}, \varphi, \varphi(r)\right): \varphi(z) \models x^{\prime}=f(x) \wedge Q \text { for all } 0 \leq z \leq r\right.
$$ for a $\varphi:[0, r] \rightarrow \mathscr{S}$ where $\left.\varphi(z)\left(x^{\prime}\right) \stackrel{\text { def } \varphi(t)(x)}{=}(z)\right\}$

Outline

(1) Learning Objectives

(2) A Gradual Introduction to Differential Invariants

- Global Descriptive Power of Local Differential Equations
- Intuition for Differential Invariants
- Deriving Differential Equations
(3) Differentials
- Syntax
- Semantics of Differential Symbols
- Semantics of Differential Equations
- Soundness
- Example Proofs
(4) Soundness Proof

(5) Summary

Differential Invariants for Differential Equations

Differential Invariant

$$
\mathrm{dl} \frac{\vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{e=0 \vdash\left[x^{\prime}=f(x)\right] e=0}
$$

$\mathrm{DI}\left(\left[x^{\prime}=f(x)\right] e=0 \leftrightarrow e=0\right) \leftarrow\left[x^{\prime}=f(x)\right](e)^{\prime}=0$
$\mathrm{DE}\left[x^{\prime}=f(x)\right] P \leftrightarrow\left[x^{\prime}=f(x)\right]\left[x^{\prime}:=f(x)\right] P$

Differential Substitution Lemmas

Lemma (Differential lemma)
 (Differential value vs. Time-derivative)

If $\varphi=x^{\prime}=f(x) \wedge Q$ for duration $r>0$, then for all $0 \leq z \leq r, F V(e) \subseteq\{x\}$:

$$
\text { Syntactic }^{\prime} \varphi(z) \llbracket(e)^{\prime} \rrbracket=\frac{\mathrm{d} \varphi(t) \llbracket e \rrbracket}{\mathrm{~d} t}(z) \quad \text { Analytic }^{\prime}
$$

Lemma (Differential assignment)

(Effect on Differentials)

If $\varphi \models x^{\prime}=f(x) \wedge Q$ then $\varphi \models P \leftrightarrow\left[x^{\prime}:=f(x)\right] P$
(6) Appendix

- Differential Equations vs. Loops
- Differential Invariant Terms and Invariant Functions

Differential Equations vs. Loops

Lemma (Differential equations are their own loop)

$$
\llbracket\left(x^{\prime}=f(x)\right)^{*} \rrbracket=\llbracket x^{\prime}=f(x) \rrbracket
$$

loop α^{*}
repeat any number $n \in \mathbb{N}$ of times can repeat 0 times effect depends on previous loop iteratior local generator is loop body α full global execution trace unwinding proof by iteration [*] inductive proof with loop invariant

ODE $x^{\prime}=f(x)$

evolve for any duration $r \in \mathbb{R}$
can evolve for duration 0 effect depends on the past solution local generator $x^{\prime}=f(x)$ global solution $\varphi:[0, r] \rightarrow \mathscr{S}$ proof by global solution with ['] proof with differential invariant

Generalizing Differential Invariants: Stronger

$$
\rightarrow \mathrm{R} \quad \vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0
$$

Generalizing Differential Invariants: Stronger

$$
\underset{\rightarrow R}{\mathrm{cut}, \mathrm{MR}} \frac{x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}{\vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}
$$

Generalizing Differential Invariants: Stronger

$$
\underset{\rightarrow \mathrm{R}}{\mathrm{dlt} \frac{x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0}{x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}} \underset{\vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}{ }
$$

Generalizing Differential Invariants: Stronger

$$
\underset{[:=] \frac{\vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0}{\text { dl } \frac{x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0}{x^{2}}} \underset{\underset{\mathrm{Cut}, \mathrm{MR}}{x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}}{\vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}}{ }
$$

Generalizing Differential Invariants: Stronger

$$
{\underset{[:=]}{\mathbb{R}} \frac{\vdash 4 x^{3}\left(4 y^{3}\right)+4 y^{3}\left(-4 x^{3}\right)=0}{\vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0}}_{\text {dl } \frac{x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0}{x^{2}}}^{{ }_{\rightarrow R}^{\text {cut,MR }} \frac{x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}{\vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0}}
$$

Generalizing Differential Invariants: Stronger

$$
\begin{aligned}
& \text { * } \\
& \mathbb{R} \quad \vdash 4 x^{3}\left(4 y^{3}\right)+4 y^{3}\left(-4 x^{3}\right)=0 \\
& {[:=] \quad \vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0} \\
& \text { dl } x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0 \\
& \text { cut,MR } x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0 \\
& \vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0
\end{aligned}
$$

Generalizing Differential Invariants: Stronger

$$
\begin{aligned}
& \text { * } \\
& \mathbb{R} \quad \vdash 4 x^{3}\left(4 y^{3}\right)+4 y^{3}\left(-4 x^{3}\right)=0 \\
& {[:=] \quad \vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0} \\
& \text { dl } x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0 \\
& \text { cut,MR } x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0 \\
& \vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0
\end{aligned}
$$

Generalizing Differential Invariants: Stronger

$$
\begin{aligned}
& \text { * } \\
& \mathbb{R} \quad \vdash 4 x^{3}\left(4 y^{3}\right)+4 y^{3}\left(-4 x^{3}\right)=0 \\
& {[:=] \quad \vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0} \\
& \text { d } \quad x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0 \\
& { }^{\text {cut, MR }} x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0 \\
& \vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0
\end{aligned}
$$

Theorem (Sophus Lie)

$$
D I_{c} \frac{Q \vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{\vdash \forall c\left(e=c \rightarrow\left[x^{\prime}=f(x) \& Q\right] e=c\right)}
$$

premise and conclusion are equivalent if Q is a domain, i.e., characterizing a connected open set.

Generalizing Differential Invariants: Stronger

$$
\begin{aligned}
& \text { * } \\
& \mathbb{R} \quad \vdash 4 x^{3}\left(4 y^{3}\right)+4 y^{3}\left(-4 x^{3}\right)=0 \\
& {[:=] \quad \vdash\left[x^{\prime}:=4 y^{3}\right]\left[y^{\prime}:=-4 x^{3}\right]\left(4 x^{3} x^{\prime}+4 y^{3} y^{\prime}\right)=0} \\
& \text { dl } x^{4}+y^{4}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{4}+y^{4}=0 \\
& { }^{\text {cut,MR }} x^{2}+y^{2}=0 \vdash\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0 \\
& \vdash x^{2}+y^{2}=0 \rightarrow\left[x^{\prime}=4 y^{3}, y^{\prime}=-4 x^{3}\right] x^{2}+y^{2}=0
\end{aligned}
$$

Theorem (Sophus Lie)

$$
D I_{c} \frac{Q \vdash\left[x^{\prime}:=f(x)\right](e)^{\prime}=0}{\vdash \forall c\left(e=c \rightarrow\left[x^{\prime}=f(x) \& Q\right] e=c\right)}
$$

premise and conclusion are equivalent if Q is a domain, i.e., characterizing a connected open set.

Clou: $(e-c)^{\prime}=(e)^{\prime}$ independent of additive constants

Strengthening Induction Hypotheses

Stronger Induction Hypotheses

(1) As usual in math and in proofs with loops:
(2) Inductive proofs may need stronger induction hypotheses to succeed.
(3) Differentially inductive proofs may need a stronger differential inductive structure to succeed.
(4) Even if $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=0\right\}=\left\{\left\{(x, y) \in \mathbb{R}^{2}: x^{4}+y^{4}=0\right\}\right.$ have the same solutions, they have different differential structure.

André Platzer.
Logical Foundations of Cyber-Physical Systems.
Springer, Switzerland, 2018.
URL: http://www.springer.com/978-3-319-63587-3,
doi:10.1007/978-3-319-63588-0.
國 André Platzer.
A complete uniform substitution calculus for differential dynamic logic.
J. Autom. Reas., 59(2):219-265, 2017.
doi:10.1007/s10817-016-9385-1.
埥 André Platzer.
Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.
Springer, Heidelberg, 2010.
doi:10.1007/978-3-642-14509-4.
: André Platzer.
Logics of dynamical systems.
In LICS, pages 13-24, Los Alamitos, 2012. IEEE.
doi:10.1109/LICS.2012.13.
: André Platzer.
Differential-algebraic dynamic logic for differential-algebraic programs.
J. Log. Comput., 20(1):309-352, 2010.
doi:10.1093/logcom/exn070.
围 André Platzer.
The structure of differential invariants and differential cut elimination.
Log. Meth. Comput. Sci., 8(4:16):1-38, 2012.
doi:10.2168/LMCS-8(4:16) 2012.
R André Platzer.
A differential operator approach to equational differential invariants.
In Lennart Beringer and Amy Felty, editors, ITP, volume 7406 of LNCS,
pages 28-48, Berlin, 2012. Springer.
doi:10.1007/978-3-642-32347-8_3.

