

 1

Active Scores: Representation and Synchronization
in Human-Computer Performance of Popular
Music1

Roger B. Dannenberg1, Nicolas E. Gold2, Dawen Liang3, Guangyu Xia1
1Carnegie Mellon University, School of Computer Science, Pittsburgh, PA
2University College London, Department of Computer Science, UK
3Columbia University, Department of Electrical Engineering, New York, NY

Abstract
Computers have the potential to significantly extend the practice of popular

music based on steady tempo and mostly determined form. However, there are

significant challenges to overcome due to constraints including accurate timing

based on beats and adherence to a form or structure in spite of possible changes that

might be made even during the performance. We describe an approach to

synchronization across media that takes into account latency due to communication

delays and audio buffering. We also address the problem of mapping from a

conventional score with repeats and other structures to an actual performance which

can involve both “flattening” the score and rearranging it, as is common in popular

music. Finally, we illustrate the possibilities of the score as a bi-directional user

interface in a real-time music performance system, allowing the user to direct the

computer through a digitally displayed score, and allowing the computer to indicate

position back to human performers.

1 Published as: Roger B. Dannenberg, Nicolas E. Gold, Dawen Liang, Guangyu

Xia. “Active Scores: Representation and Synchronization in Human-Computer

Performance of Popular Music,” Computer Music Journal, 38(2) (Summer), 2014, pp.

55-62.

 2

Introduction
Popular music “scores” come in many forms of notation from a full manuscript

score to (more commonly) chord lists or lead sheets. Musicians improvise from

these during rehearsal and performance, treating the score as a means of

synchronising structure and harmony. Scores are typically sectional, allowing the

dynamic reordering of sections during performance. When placed in the context of

Human-Computer Music Performance (HCMP) of popular music, a computer-

mediated approach to the management and representation of scores is required to

allow a virtual (computer-based) “performer” to appropriately participate with the

humans in the band.

The management and use of notation is a key aspect of HCMP both for internal

software representations of music that support automated performance systems and

as a visible interface with which human performers interact (one of a number of

usability and adoption aspects of HCMP recently identified (Gold, 2012)). This

paper presents a foundation for co-ordinating media in multiple modalities and then

explores two possible approaches to score management for HCMP. The first is a

basic score representation language for well-formed HCMP scores (i.e. those that are

“parsable” according to normal rules of music notation). Such a language could be

used to encode HCMP scores from one of many human-readable formats, e.g. lead-

sheet, chord list, or full score. Second, we explore the idea of “notation as interface,”

based on the architecture first described in Liang, Xia, and Dannenberg (2011) that

allows the performer to mark-up a scanned score and use the resulting digital

version for cueing in rehearsal and performance.

While this work has many connections to previous work, we introduce several

novel ideas. First, we present formulas for synchronizing media in the presence of

latency, which may vary across different media and players. The approach is

immune to communication latency between a central coordinating “conductor” and

 3

distribute “players” by expressing synchronization in terms of quasi-static

mappings rather than time-sensitive messages. The methods insure smooth tempo

adjustments as opposed to sudden jumps when timing adjustments are required.

Second, we take a detailed look at the relationship between a conventional score

and an actual performance. A conventional score may have nested repeated sections

and other indications, the interpretation of which is unclear. Scores may be re-

arranged before or during a performance. We describe a novel representation aimed

at expressing and formalizing the metrical meaning of a score with respect to its

performance.

Finally, we suggest that we can use these techniques to coordinate media with

score displays to produce a new form of interactive music system that is well suited

to HCMP. In particular, we show that a score can be used as a bi-directional

interface in live performance, facilitating bi-directional communication between

human and computer musicians.

Foundations of Media Synchronization
A key issue in HCMP is to synchronize media in multiple modalities.

Because we assume popular music forms, we also assume a common structure of

beats and measures across all media. Thus time is measured in beats. The basis for

synchronization is a shared notion of the current beat (the dbeat for dynamic beat

number) and the current tempo (Dannenberg et al. 2014). Beats are represented by a

floating point number, hence they are continuous rather than integers or messages

such as in MIDI clock messages. Also, rather than update the beat number at

frequent intervals, we use a continuous linear mapping from time to beat. This

mapping is conveniently expressed using three parameters (b0, t0, s):

 b = b0 + (t – t0) × s (1)

 4

where tempo s is expressed in beats per second, at some time in the past beat b0

occurred at time t0, the current time is t, and the current beat is b. One could also

solve for b0 when t0 = 0 to eliminate one parameter, but we find this formulation

more convenient.

It should be pointed out that while Eq. 1 (and equations below) express tempo as

a constant scale factor s, in practice, we expect frequent tempo estimations, e.g. on

every beat, that make slight changes to s. One could handle this by numerical

integration (current beat is the integral of tempo), but this leads to the accumulation

of error and is not very efficient. One of our concerns will be how to obtain a smooth

progression of beat position that synchronizes to external observations of tempo and

beat.

One advantage of our approach is that it is almost independent of latency. One

can send (t0, b0, s) to another computer or process and the mapping will remain valid

regardless of the transmission latency. There is an underlying assumption of a

shared global clock (t), but accurate clock synchronization is straightforward (Brandt

and Dannenberg, 1999) and can be achieved independently of media

synchronization, thus making the system more modular. When parameters change,

there can be a momentary disagreement in the current beat position among various

processes, but this should be small given that tempo is normally steady. We will see

below how these slight asynchronies can be smoothed and do not lead to long-term

drift.

Media players schedule computation to affect the output at specific beat times.

For example, an audio player may begin a sample playback at beat 3, or a MIDI

player may send a note-on message at beat 5. The current beat time b in Eq. 1 refers

to the beat position of media which are being output currently, e.g. the beat position

corresponding to the current output of a digital-to-analog converter (DAC). Time-

dependent computation of media must of course occur earlier. For example, if the

 5

audio output buffer contains 0.01s of audio, then computation associated with beat b

should be performed 0.01s earlier than b. Thus, given a player-specific latency l, we

need to compute the real time t at which to schedule a computation associated with

beat b. The following formula is easily derived:

 t = t0 + (b – b0) / s – l (2)

We simply map the beat position b according to (b0, t0, s), and then subtract the

latency l to get the computation time t.

Estimating the Mapping

One approach to acquire a mapping from time to beat is the following: First, a

simple foot pedal is used to tap beats. A linear regression over recent taps is then

used to estimate the mapping from beat to time (i.e. to estimate t0, b0, and s). At this

stage, successive beats are numbered with successive integers, but these start at an

arbitrary number. Once the tempo and beat phase is established, there must be some

way to determine an offset from the arbitrary beat number to the beat number in the

score. This might be determined by a cue that tells when the system should begin to

play. In other cases, especially with a foot-pedal interface, the system can be

constructed to, say, start on the third foot tap (thus the pedal fulfills the dual roles of

beat acquisition and cueing system simultaneously).

We believe that audio analysis could also be used to automate beat identification

to a large extent (c.f. Robertson and Plumbley 2007), and we are investigating

combinations of automated and manual techniques to achieve the high reliability

necessary for live performance. The important point here is that some mechanism

estimates a local mapping between time and beat position, and this mapping is

updated as the performance progresses.

 6

Tempo and Scheduling

Schedulers in computer music systems accept requests to perform specific

computations at specific times in the future. Sometimes, the specified time can be a

“virtual” time in units such as beats that are translated to real time according to a

(time varying) tempo, as in Eq. 2. Previous architectures for handling tempo control

and scheduling (e.g. Anderson and Kuivila, 1990) have assumed a fixed and uniform

latency for all processing. Under this assumption, there are some interesting fast

algorithms for scheduling (Dannenberg, 1989). An important idea is that all pending

events (callbacks) can be sorted according to beat time and then one need only

worry about the earliest event. If the tempo changes, only the time of this earliest

event needs to be recomputed. Unfortunately, when event times are computed

according to Eq. 2, a different event may become the earliest when tempo changes.

For example, consider an audio player with a 0.3 s latency, a MIDI player with 0.1 s

latency, and tempo s = 1. An audio event at beat 1 is scheduled to be computed 0.7 s

in the future so that after 0.3 s latency it will be heard at exactly 1 s. A MIDI event at

beat 0.7 is scheduled at 0.6 s. Notice that we will compute the MIDI event first.

Now suppose the tempo changes to s = 2 bps. The audio event should now be

computed at 0.2 s while the MIDI event should be performed at 0.7/2 – 0.1 = 0.25 s.

Now the audio event must be computed first! The time order in which events are

computed may change as a function of tempo.

Therefore, we need to rethink scheduling structures of previous systems. The

non-uniformity of latency is a real issue in our experience because audio time-

stretching can have a substantial latency due to pre-determined overlap-add

window sizes, page turning might need to begin seconds ahead of the time of the

first beat on the new page, etc.

A second problem is that when the time-to-beat mapping is calculated from

linear regression, there can be discontinuities in the time-to-beat-position function

 7

that cause the beat position to jump forward or backward instantaneously. Most

media players will need to construct a smooth and continuous curve that

approximates the estimated time-to-beat mapping. Previous systems have used

elaborate rule-based or other models of tempo adjustment, especially for conducting

or computer accompaniment where tempo changes might be sudden (Dannenberg

1989). We use a piece-wise linear time-to-beat map, adjusting the slope occasionally

so that the map converges to the most recent linear regression estimate of the

mapping, and our formulation takes latency into consideration.

Figure 1 illustrates this process. The lower line represents an initial mapping

according to Eq. 1. Imagine that, at time t1, a new beat has resulted in a new linear

regression and a new estimate of the time-to-beat map shown in the upper line. This

line is specified by an origin at (te, be) and a slope (tempo) of se beats per second. The

problem is that switching instantly to the new map could cause a sudden forward

jump in beat position. Instead of an instant switch, we want to “bend” our map in

the direction of the new estimate. We cannot change the current (lower) map

immediately at t1 because output has already been computed until t1+l, where l is the

latency. For example, if audio output has a 0.1s latency, then samples computed for

beat position b at time t1 will emerge at t1+0.1. Thus, the earliest we can adjust the

map will be at time t1+l corresponding to beat b. Let us call the new map parameters

tn, bn, and sn. Since the current map passes through (t1+l, b), we will choose this point

as the origin for the new map (Eqs. 3, 4, 5) leaving only sn to be determined.

 8

Figure 1. Modifying the local time-to-beat mapping upon receipt of a new regression-based

mapping estimate.

 b = b0 + (t1 + l − t0) × s0 (3)
 tn = t1 + l (4)
 bn = b (5)

We choose sn so that the new time map will meet the estimated (upper) time map

after d beats, where larger values of d give greater smoothing, and shorter values of

d give more rapid convergence to the estimated time map (we use 4 beats). In

practice, we expect a new linear regression every beat or two depending on how

often there is input from a beat detector or foot tap sensor. Thus, the new time map

will only converge part of the way to the estimated map before this whole process is

repeated to again estimate a new map that “bends” toward the most recent time-to-

beat map estimate.

 9

To solve for sn, notice that we want both the upper regression line and the new

time map to meet at (t, bn+d), so we can substitute into Eq. 1 to obtain an equation for

each line. This gives two equations (Eqs. 6, 7) in two unknowns (t and sn):

 bn + d = be + (t − te) × se (6)

 bn + d = bn + (t − tn) × sn (7)

Solving for sn gives us Eq. 8:

 (8)

Under this scheme, each media player sets (b0, t0, s0) to (bn, tn, sn) after each new

estimated time map is received, ensuring that the media position converges

smoothly to the “ideal” common time map. Because of Eq. 3, these parameters

depend on latency l, which can differ according to different players. It follows that

different media will follow slightly different mappings. This can be avoided, and

things can be simplified, by giving all media the same latency. For example, MIDI

messages can be delayed to match a possibly higher audio latency. In any case, time

map calculation is still needed to avoid discontinuities that arise as new beat times

suddenly change the linear regression, so we prefer to do the scheduling on a per-

player basis, allowing each player to specify a media-dependent latency l. Note that

(bn, tn, sn) describes the output time for media. Given latency l, computation must be

scheduled early according to Eq. 2. Equivalently, we can shift the time map left by l.

Score Representation
Score representation is important for HCMP because scores can contain

repetitions, alternate endings, optional repeats and cuts. Media may exist only for

 10

certain sections of the score. Performers often alter the score, e.g. by improvising an

introduction or skipping a verse. Finally, when things go wrong in performance, we

would like both the human and machine performers to recover gracefully. The score

can provide a basis for this recovery.

The first approach to score management for HCMP that we present deals with

abstract encoding of a score for use in performance. Such encodings need to be

simple enough for non-expert users to create and use, but allow flexibility for in-

performance rearrangement. To achieve this, we adopt the notions of a static score,

an arrangement, and a dynamic score.

A static score representation must be easy to encode from a printed score or lead-

sheet while also being amenable to arrangement and re-arrangement during

performance. In our experience, popular music arrangement typically works by

cutting, copying, and inserting whole measures (or sections). Therefore, the

representations presented here operate on measures and groups of measures. We

believe exceptions, such as pick-up notes, can be handled within this framework by

considering partial measures to be part of the following measure. Although the

language is, in essence, a formal programming language, it is intended to be

representational (an Artificial Domain Embedded Language (Gold, 2011)) with a

clear correspondence to common practice music notation.

Static Score

Error! Reference source not found. shows a short score fragment that will be

used to illustrate the encodings proposed. The rehearsal letters designate sections of

the piece. The fragment contains a number of structural complexities including a

vamp repeat (section C) to be repeated as desired by the performers, a traditional

repeat and a D.S. repeat with coda. The corresponding static score representation

consists of block declarations (Decl(a)) and terminations (End(a)), numbered

 11

measures (Mx), repeat declarations (numbered, un-numbered, dal segno), repeat

terminations, and alternative ending declarations and terminations. This

representation language allows the abstract structure of a score to be encoded

without being concerned with the note-level specification of the music material. The

static score language thus encodes the score as written at the measure level and

attaches sectional labels to groups of measures. Note that musicians need not learn

or even be aware of this representation language because it can be presented to the

user in terms of music notation or other graphical representations.

Arrangement

The arrangement representation uses the sectional labels declared by the static

score to specify the order of the sections to be performed. This is equivalent to the

musicians noting the sectional structure of a song (e.g. intro, verse, chorus…). It

allows for easy rearrangement during rehearsal and performance, simply by

changing the section ordering and regenerating the dynamic score. An example

arrangement based on the normal reading of the score (not a “re-arrangement”) is

shown in Figure 2.

 12

Figure 2: Four score representations are shown. Common practice notation (top) is
translated directly to a machine-readable static score (left). The arrangement (bottom)

shows the nominal interpretation of the score but could be altered to specify a different
sequence of sections. The dynamic score (right) gives an expanded measure-by-measure

performance sequence. Notice that the number of times section C is repeated is
determined by cues during the performance. Also, the performance history preceding
each measure is encoded (in reverse order) to provide context information required to

perform instructions such as “play 2nd time only on the D.S.”

 13

Dynamic Score

The dynamic score provides a measure-level unfolding of the static score in

accordance with the arrangement. It encodes a performance history using section

names and the number of times they have been played (e.g. section C the first time

through would be encoded C1). Where sections contain repeats these are indicated

by hyphenated occurrence numbers (e.g. the second repeat of the first time through

section C would be encoded C1-2. This allows a system to restart unambiguously

from any point in the performance history and cue appropriate metadata.

Once an arrangement has been created, the measures to be played can be

specified (as Mx where x is the measure number) in readiness for the rendering

systems to schedule their data. Since it is important to be able to navigate through a

piece during rehearsal (e.g. to respond to directions such as “let’s go from the

second time through section E”), each measure is attached to a state vector (in

square brackets) describing the sectional progress (in reverse order) of the piece to

that point.

This captures the notion of the dynamic score being both a prescription of what

is to be played and subsequently a history of what has been played. Figure 2 shows

a possible dynamic score for the example fragment and arrangement shown in the

figure. This is a post-performance dynamic score since pre-performance, the

number of iterations of section C (the vamp section) cannot be known and it is only

the receipt of a cue (as marked in the dynamic score) that causes the remainder of

the score to be written as far as possible (until the next vamp is encountered).

Unbounded repeats like this are counted during performance to support rehearsal

direction (e.g. “twice through the vamp and then on”). In works without non-

deterministic repeats, the entire dynamic score could be produced before the

performance begins.

 14

Conductor and Players: An Instance of HCMP Architecture
Our second approach to score management involves the use of the score as an

interface. We first describe an instance of HCMP architecture that supports the

system.

We have implemented an HCMP system organized as a set of “Player” objects

that interact with a “Conductor” object that controls the players. The Conductor

provides a central point for system control. The Players also use a real-time

scheduler object to schedule computation according to Eq. 2. The interface and

interaction between the Conductor and Players is illustrated in

Figure 3: Interfaces for Conductor and Player objects include commands (left), from

sensors and user interfaces, and messages (center) used by the Conductor to coordinate
multiple instances of the Player class. The messages between Conductor and Player are

shown in typical order from top down.

.

The Player Class

A Player is any object such as an audio or MIDI sequencer that generates output

according to the current tempo and beat position (a rendering system in terms of the

architecture in Dannenberg, et. al, 2014). A Player can also generate visual output,

including page turning for music notation or an animated display of the beat.

 15

Figure 3: Interfaces for Conductor and Player objects include commands (left), from

sensors and user interfaces, and messages (center) used by the Conductor to coordinate
multiple instances of the Player class. The messages between Conductor and Player are

shown in typical order from top down.

Every “player” implements four methods used for external control:

set_position(pos), start(), stop(), and set_timemap(b, t, s). The set_position(pos) method is

a command to prepare to output media beginning at beat position pos. This may

require the player to pre-load data or to output certain data such as MIDI controller

messages or a page of music notation. The start() method is a command to begin

output according to the current tempo and the mapping from time to beat position.

The playback can be stopped with the stop() command. Note that stopping (sound

will cease, displays indicate performance has finished) is different from setting the

tempo to zero (sound sustains, displays are still active), so we need explicit start and

stop signaling. The set_timemap(b, t, s) method updates the mapping from real time

to beat position by changing it to the linear function that passes through beat b at

time t with slope s (in beats per second).

Note that the external interface to Players concerns time, beats, and control, but

says nothing about media details. In this way, new players can be added in a

modular fashion, and the details of player operation can be abstracted from the

 16

overall system control. We will see in section “Coordination of Media” how the beat

position is mapped to media content.

The Conductor Class

The role of a Conductor is to provide a single point of control and

synchronization for all players. The Conductor methods include the same

set_position(pos), start(), stop(), and set_timemap(b, t, s) methods as do Player objects.

These methods are to be used by higher level control objects. For example, a

graphical user interface may have a conventional play/stop/pause/rewind interface

that is implemented by Conductor methods. Alternatively, a more intelligent system

might use automatic music listening, gestures, or other ways to determine when and

where to start and stop. In addition, an add_player(p) method allows new Player

objects to add themselves to the list of Players managed by a single Conductor.

Scheduling

We assume the existence of a real-time scheduler object (Dannenberg, 1989) to be

used by Players. A typical player has computation to perform at specific beat times.

Usually, a computation will perform some action needed at the present time,

followed by the scheduling of the next action. The scheduler’s role is to keep track of

all pending actions and to invoke them at the proper time, thus eliminating the need

for Players to busy wait, poll, or otherwise waste computer cycles to ensure that

their next computation is performed on time. Players use Eq. 2 to determine the real

time t at which to perform an action scheduled for beat position b.

Coordination of Media

An important feature of the framework is that it coordinates media of different

forms – midi, audio, score, etc. – in real-time performance. As introduced earlier, the

 17

framework is based on a shared notion of beat position, i.e. all the players controlled

by the Conductor share the same beat position. The beat information for most MIDI

is easy to extract because it is normally encoded in a Standard MIDI File.

For audio, we must have auxiliary information that encodes a mapping from

beat position to audio time. This mapping may be constructed by manual tapping or

automatic alignment (Dannenberg and Raphael, 2006) to audio or MIDI for which

beat times are known.

For music notation, structured score documents such as MusicXML(Castan et al.,

2001) have all the information needed to map from beats to page numbers and

positions, but for simplicity, we use scanned images and let users label the start

position of each measure manually. OMR combined with symbolic music to audio

alignment is another promising approach to label scanned music notation (Kurth et

al., 2007).

Distributed Computation

The framework supports distributed computation or computation in separate

threads on multi-core computers. Coordination and synchronization is often

difficult in distributed systems because of unknown communication latency. In our

approach, communication latency is not critical. Communication latency certainly

affects the responsiveness of the system, but unless tempo changes drastically, beat

positions are predictable in the near future. Instead of transmitting beat times, we

transmit mappings from global time to beat position. These mappings are expressed

with respect to a shared global clock, and they do not change even if their delivery is

delayed. Any two processes that agree in terms of their real clock time and their

mapping (t0, b0, s) will agree on the current beat position.

In a distributed implementation, the Conductor communicates via (reliable)

messages with Players, and Players rely on local schedulers to activate timed

 18

computations (see). If the schedulers are on separate computers, the computer real-

time clocks must use a clock synchronization protocol to ensure that every scheduler

agrees on the real clock time.

We have found it easy to synchronize clocks at the application level. For

example, designated slave machines send a request to a master for the time, and the

master time is returned. This round trip time is usually less than a few milliseconds,

and the slave can set its clock assuming a communication latency of half the round

trip time. This can easily produce synchronization to within 1ms. If the round trip

time is longer than normal, the slave simply assumes that an unexpected network

delay has made the result unreliable, ignores the result, and tries again. More

elaborate techniques based on averaging and estimating clock drift can even

synchronize clocks to microseconds if needed (Brandt and Dannenberg, 1999).

Figure 4: In a distributed message-based implementation, the Conductor

communicates with Player instances over a network. Local scheduler (``Sched'')
objects enable players to deliver accurately timed output. A clock synchronization

protocol ensures that local clocks are synchronized. These design features
substantially mask any effects of network latency.

Notation as Interface
The electronic display of music is not a new idea (Bainbridge and Bell 2009,

Connick 2002, Kurth et al. 2007, MakeMusic 2013), but here we describe our use of

active music notation as a bi-directional human-computer interface. Olmos, et. al

 19

(2012) aptly describe this as “Score-Centric Control” in the context of their Open

Orchestra system.

Location Feedback and Page Turning

In an interactive music system where synchronization is key, it is important for

performers to communicate their coordination with the group. For example, when it

is time for a guitar solo, the vocalist and guitarist might look at each other to

acknowledge that both musicians expect the solo. If the vocalist’s gestures instead

indicate he or she will sing another chorus, the guitarist might hold off until later. In

a similar way, it is important for the computer to signal its current position to

human players so that they can either adapt to the computer or provide some

override to steer the computer back into synchronization.

Music notation provides an attractive basis for communication because it

provides an intuitive and human-readable representation of musical time, it is visual

so that it does not interfere with music audio, and it provides both history and look-

ahead that facilitate planning and synchronization. The computer can communicate

its location to human performers by displaying a moving marker over a digital

display of the score. We have discussed already how score display can be

coordinated with MIDI and audio performance. Human musicians can then notice

when the measure they are reading does not correspond to the measure that is

highlighted and take corrective action.

Another possibility is automatic page turning, which was introduced in early

computer accompaniment systems. For example, SmartMusic (MakeMusic, 2013)

uses the Finale notation engine to show scores and score position in real time as it

follows a soloist in the score. In our framework, page turning is easily controlled by

the Conductor. Just like scheduling an event from the MIDI player, the score player

can also schedule a “scrolling-up” event.

 20

Various schemes have been implemented for “page turning” on a display screen

of limited size. It is well known that musicians read ahead, so it is essential to

display the current music as well as several measures in the future. The most

common approach is to split the screen into top and bottom halves. While the

musician reads one half, the computer updates the other half to the next system(s) of

music. Other solutions include: scrolling up at a constant speed, scrolling up by one

system when it is finished, scrolling at a variable speed which is proportional to the

tempo, and scrolling an “infinitely wide” score horizontally. Our implementation

presented here displays multiple “slices” of the score on the screen (see).

Selecting Locations from Notation

In addition to affording computer-to-human feedback, music notation can be

used as an “input device,” for example to indicate where to begin in a rehearsal. Our

system has start positions for every measure stored as coordinates (page, x, y). When

we point to the position where we would like to start (whether with a finger or an

input device), the system can map the position to a beat number and use the

Conductor’s set_position method to prepare all Players to start from that location.

This action will also display a visual indicator of the position in the score, giving a

confirmation to the user that the correct location was detected.

Implementation
We have prototyped components of the HCMP architecture in Serpent

(Dannenberg, 2002), a real-time programming language inspired by Python. Our

system follows the approach described earlier, with classes Conductor, Player, and

Time_map. The Player class is subclassed to form Midi_player, Score_player (a music

notation display program), and Posn_player (to display the current position). Each

player implements methods for set_position, start, stop, and they all inherit a method

 21

for set_timemap that adjusts each local player’s time map to converge to that of the

conductor.

The score player class is the most complex (about 2400 lines of Serpent code). It

displays music notation, turning “pages” automatically according to score position

given by the conductor. The music notation comes from image files (e.g. jpeg or

png), which are manually annotated. The score player includes graphical annotation

tools to: (1) indicate the staff height, (2) subdivide the score into systems, (3) mark

bar lines, (4) mark repeat signs, endings, D.S., coda, and fine, (5) mark a starting

measure, and (6) add arbitrary free hand and text annotations (see).

After annotating the score, the score player sorts measures, repeats, and other

symbols to form its internal representation of the static score. It can then compute a

dynamic score by “unfolding” the repeats and computing a list of dynamic measures.

Formalizing this process is the subject of a recent paper (Jin and Dannenberg, 2013).

The score player also scales the music notation images to fit the width of the display

and divides the images into slices that are stacked vertically on the display.

There are many possibilities for music scrolling and page-turning. In the current

implementation, we divide the screen into thirds and always display the previous,

current, and next sub-pages. For example, the initial display shows the first 3 sub-

pages, in the order 1-2-3. When the player object advances to the third sub-page, the

display is updated to show 4-2-3. The player object continues reading sub-page 4 at

the top of the display, at which time the display updates to 4-5-3, etc.

Evaluation

To our knowledge, there are no comparable systems that would enable a

quantitative evaluation, but we can make a qualitative comparison between our

work and many other related systems. Computer accompaniment (Dannenberg and

Raphael 2006, MakeMusic 2013) cannot synchronize to performances with

significant amounts of improvisation. Fixed media approaches such as Open

 22

Orchestra (Olmos et al. 2012) do not adjust tempo to synchronize to live musicians.

Conducting systems (Katayose and Okudaira 2004) require the full attention of a

human conductor to manage synchronization with live musicians. Interactive music

systems to date are mostly designed to generate music in response to live inputs

rather than play pre-determined parts. Thus, they are not capable of performing

conventionally notated compositions. Perhaps the most closely related work to ours

is B-Keeper (Robertson and Plumbley 2007, 2013). Since B-Keeper relies on audio

analysis for beat tracking, it is restricted to drumming for which beat tracking is

successful, which rules out much of the jazz idiom in which we have been working,

at least until beat tracking methods improve. Further discussion of evaluation and

current HCMP approaches can be found in Dannenberg, et al. (2013). Overall, our

work satisfies a set of interesting and practical musical requirements that have not

been previously addressed.

 23

Figure 5: Score display showing editing toolbar (top) and a vertical division into

thirds. The divisions allow incremental updates so that the performer can
always see the current location and at least 1/3 page ahead.

Evaluation of software techniques is difficult because there are few data points

and many extraneous factors. In our experience, scheduling based on time maps as

described above offers a highly effective approach to reasoning about timing. The

main advantage is that problems can be addressed independently in a modular

fashion: What is the estimated actual tempo? How should performed tempo be

adjusted to obtain synchrony? How can we compensate for real-time clock drift on

separate systems? Given an event sequence specified according to beats, what is the

real time of the next event? Each of these problems is handled in isolated software

modules, which makes the software much easier to construct.

 24

Working performance systems can be viewed through online video at

http://www.youtube.com/watch?v=J_Z1GSltMPw and

http://www.youtube.com/watch?v=R11u0S6uENA. The first example, described in

a companion article (Dannenberg et al. 2014), is a large-scale performance with a live

jazz band and a virtual string orchestra. The second shows a smaller ensemble (a

quartet) where the trumpet player uses HCMP to add harmony and counterpoint to

a melody.

Conclusions
Human-Computer Music Performance (HCMP) has usually been explored in the

context of experimental computer music, but we are only beginning to consider the

possibilities of computers as “live” musicians performing popular music. Popular

music poses interesting challenges for synchronization and music representation.

We have described a modular implementation that synchronizes multiple media in

the face of tempo changes and different amounts of latency.

Common practice music notation with repeats and other structures (which we

call static scores) must be reconciled with the “unfolded” linear representation

(dynamic scores) seen in audio files, standard MIDI files, and the live performance

itself. HCMP systems must also allow for changes at or near performance time.

Musicians should be free to make new “arrangements” that alter the structure

implied by the static score. We have suggested a representation to handle these

requirements.

Musicians also need intuitive interfaces to communicate with HCMP systems.

We described one interface based on music notation. The most interesting aspect of

the interface is its bi-directional nature. The display can indicate the computer’s

position and future intentions (what music is next). At the same time, musicians can

 25

reset the computer’s position or give cues interactively using a pointing device or

touch-sensitive display.

We have built and used prototypes of the systems described here. In the future

we aim for greater flexibility, more accurate synchronization to live players,

improved sound, and tools to make HCMP “content” easier to develop and use.

Acknowledgments
The support for this work by the UK Engineering and Physical Sciences Research

Council [grant number EP/F059442/2] and the National Science Foundation (grant

no. 0855958) is gratefully acknowledged. Our first performance system and the

music display work were also supported by Microsoft Research. Thanks to Ryan

Calorus, who implemented a precursor to the music display system described here.

Portions of this article are based on earlier publications (Gold and Dannenberg 2011,

Dannenberg 2011a, Dannenberg 2011b, Liang, Xia, and Dannenberg 2011).

References
Anderson, D., and R. Kuivila. 1990. “A system for computer music performance.”

ACM Transactions on Computer Systems, 8(1):56-82.

Bainbridge, D., and T. Bell. 2009. “An ajax-based digital music stand for

greenstone.” In Proceedings of the 9th ACM/IEEE-CS joint conference on Digital

libraries (JCDL '09), ACM, New York, pp. 463-464.

Brandt, E., and R. Dannenberg. 1999. “Time in distributed real-time systems.” In

Proceedings of the 1999 International Computer Music Conference, ICMA, San

Francisco, pp. 523-526.

Castan, G., M. Good, and P. Roland. 2001. “Extensible markup language (XML) for

music applications: An introduction.” In The Virtual Score, MIT Press,

Cambridge, MA, pp. 95-102.

 26

Connick, H. Jr. 2002. System and method for coordinating music display among players in

an orchestra. US Patent #6348648.

Dannenberg, R. 1989. “Real-time scheduling and computer accompaniment.” In

Current Directions in Computer Music Research, edited by Max. V. Mathews & John

R. Pierce, MIT Press, Cambridge, MA, pp. 225-261.

Dannenberg, R. 2002. “A Language for Interactive Audio Applications.“ In Proceedings of

the 2002 International Computer Music Conference, ICMA, San Francisco, pp. 509-

515.

Dannenberg, R. 2011a. “A Vision of Creative Computation in Music Performance.”

In Proceedings of the Second International Conference on Computational Creativity,

Mexico City, Mexico, pp. 84-89.

Dannenberg, R. 2011b. “A Virtual Orchestra for Human Computer Music

Performance.” In Proceedings of the 2011 International Computer Music Conference,

pp. 185-188.

Dannenberg, R., Z. Jin, N. Gold, O. Sandu, P. Palliyaguru, A. Robertson, A. Stark, R.

Kleinberger. 2013. “Human Computer Music Performance: From Synchronized

Performances to Musical Partner.” In Proceedings of the Sound and Music

Conference 2013, SMC 2013, Stockholm, Sweden, pp. 277-283.

Dannenberg, R., N. Gold, D. Liang, and G. Xia. 2014. “Methods and Prospects for

Human-Computer Performance of Popular Music.” Computer Music Journal [fill

in details of companion article].

Dannenberg, R., and C. Raphael. 2006. “Music score alignment and computer

accompaniment.” Comm. ACM 49(8):38-43.

Gold, N. 2011. “Knitting Music and Programming.” In Proceedings of 11th IEEE

International Conference on Source Code Analysis and Manipulation (SCAM2011),

Williamsburg, VA, pp 10-14.

 27

Gold, N. 2012, “A Framework to Evaluate the Adoption Potential of Interactive

Performance Systems for Popular Music.” In Proceedings of 9th Sound and Music

Computing Conference (SMC 2012), Copenhagen. Available as

http://smcnetwork.org/node/1704.

Gold, N., and R. Dannenberg. 2011. “A Reference Architecture and Score

Representation for Popular Music Human-Computer Music Performance

Systems.” In Proceedings of the 2011 International Conference on New Interfaces for

Musical Expression (NIME11), Oslo, pp. 36-39.

Jin, Z., and R. Dannenberg. 2013. “Formal Semantics for Music Notation Control

Flow.” In Proceedings of the 2013 International Computer Music Conference, Perth.

Katayose, H., and K. Okudaira. 2004. “Using an Expressive Performance Template

in a Music Conducting Interface.” In Proceedings of the 2004 Conference on New

Interfaces for Musical Expression (NIME04), (Hamamatsu), ACM Press., pp. 124-

129.

Kurth, F., M. Müller, C. Fremerey, Y. Chang, and M. Clausen, M. 2007. “Automated

synchronization of scanned sheet music with audio recordings.” In Proceedings of

ISMIR, Vienna, pp. 261-266.

Liang, D., G. Xia, and R. Dannenberg, “A Framework for Coordination and

Synchronization of Media.” In Proceedings of the 2011 International Conference on

New Interfaces for Musical Expression (NIME11), Oslo, 2011, pp. 167-172.

MakeMusic, Inc. 2013. SmartMusic - music education software (web page),

http://www.smartmusic.com. Last accessed Oct 22, 2013.

Olmos, A., N. Bouillot, T. Knight, N. Mabire, J. Redel, and J. Cooperstock. 2012. “A

High-Fidelity Orchestra Simulator for Individual Musicians’ Practice.” Computer

Music Journal, 36(2):55-73.

 28

Robertson, A., and M. Plumbley. 2007. “B-Keeper: A beat tracker for real time

synchronisation within performance.” In Proceedings of New Interfaces for Musical

Expression (NIME 2007), New York, NY, USA, pp 234-237.

Robertson, A. and M. Plumbley. 2013. “Synchronizing Sequencing Software to a

Live Drummer.” Computer Music Journal, 37(2):46–60.

