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The development and performance of network-aware applications depends on the availability of accurate predictions of

network resource properties. Obtaining this information directly from the network is a scalable solution that provides the

accurate performance predictions and topology information needed for planning and adapting application behavior across

a variety of networks. The performance predictions obtained directly from the network are as accurate as application-level

benchmarks, but the network-based technique provides the added advantages of scalability and topology discovery.

We describe how to determine network properties directly from the network using SNMP. We provide an overview

of SNMP and describe the features it provides that make it possible to extract both available bandwidth and network

topology information from network devices. The available bandwidth predictions based on network queries using SNMP

are compared with traditional predictions based on application history to demonstrate that they are equally useful. To

demonstrate the feasibility of topology discovery, we present results for a large Ethernet LAN.
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1. Introduction

Network-aware programming is emerging as an ef-
fective way of adapting to fluctuating network condi-
tions. Providing the information of which applications
should be “aware,” however, has proven to be a sig-
nificant challenge to developing such applications [2].
User-level benchmarks that record the performance of
data transfers across the network provide some infor-
mation, but suffer from poor scaling and the inability
to determine network topology.

Scaling is obviously important in distributed system
design. A network performance prediction system must
have the ability to give predictions for any combina-
tion of machines selected from a large set of possible
machines at many sites across the network.

Topology information is extremely important for
performance-based machine selection. For example,
without topology information, it is impossible to deter-
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mine when multiple communication paths within the
same application will be sharing a single network link.
Failure to consider this intra-application sharing can re-
sult in an overestimation of the network performance an
application can achieve.

An alternative to benchmarking is obtaining perfor-
mance information through direct queries to the com-
ponents making up the network. We show that this
direct query approach is not only as accurate as bench-
marking but also can lower the load imposed on the
network and provide previously unavailable information
about network topology. The Simple Network Manage-
ment Protocol (SNMP)[5] provides an interface to cur-
rent networking hardware through which queries can be
made to obtain information about the hardware’s sta-
tus.

The remainder of this paper will discuss our results
with using SNMP to obtain network information. Sec-
tion 2 describes several techniques for performance pre-
diction, including benchmark- and network-based ap-
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proaches. Section 3 provides an overview of the struc-
ture of SNMP and how it can be used for resource status
discovery. Sections 4, 5, and 6 analyze the accuracy of
SNMP for obtaining predictions of available bandwidth.
Section 7 discusses how to extract topology informa-
tion from the network components. Section 8 discusses
changes needed in the network infrastructure, including
SNMP, to make it easy for distributed application pro-
grammers to use direct network queries to take advan-
tage of the information already stored in the network.

2. Bandwidth prediction techniques

Network performance predictions are needed by ap-
plications for uses such as machine selection and set-
ting application quality parameters. This section dis-
cusses three different techniques for performance predic-
tion and introduces a model that describes these tech-
niques. The three techniques represent a continuum
of options, from the most straightforward prediction
based on the application itself to the least straightfor-
ward benchmark-based prediction. This section ignores
all performance factors except for network bandwidth.
In cases where network bandwidth is not the predom-
inant bottleneck, other resource information must be
considered.

All three bandwidth prediction techniques rely on
the same basic time series prediction models, which use
a series of measurements to make predictions of future
behavior. The difference between the three techniques
is what measurements are taken and how they are con-
verted to a prediction of application performance. Ide-
ally, the series of measurements is taken by an indepen-
dent daemon that collects the data for later use when
a user wishes to run an application. A mathematical
model is fit to the series. When a user requests a predic-
tion, future performance is extrapolated from the model
that has been fit to the past data. Selection and use of
time series models has been dealt with by many au-
thors [3,8,20]. In our notation, time series models are
indicated by a t subscript on the measurement that is
used for the series.

2.1. Application-based

The most straightforward measure of an applica-
tion’s performance is obtained by actually running
the application on the network. Similarly, the most

straightforward prediction of an application’s future
performance on that network is obtained using the ap-
plication’s performance history on that network to pre-
dict its future performance. The performance of an ap-
plication A running on a network N is denoted A(N ).
The time series model At(N ) can be used to predict the
application’s performance on the network.

Unfortunately, the many combinations of applica-
tions, parameters, and resource selections make gather-
ing enough application history information to provide
useful predictions infeasible. For this reason, other pre-
diction techniques must be considered.

2.2. Benchmark-based

Benchmarking solves many of these problems by us-
ing a small set of representative applications, called
benchmarks or probes, to predict the performance of
many applications. The performance of the benchmark-
ing application is denoted B(N ). Again, a time series
of benchmarks can be used to form a prediction, Bt(N ),
of how the benchmark B will perform on the network
N in the future.

The challenge with using benchmarks for perfor-
mance predictions is the mapping from benchmark per-
formance to application performance. One method is
to make the assumption that the relative performance
of the application and benchmarks are the same, so the
best connection for the application is assumed to be the
same as the best connection for the benchmark. This
approach is often useful for parallel applications where
the only concern is moving the data as quickly as pos-
sible.

The lack of quantitative information about the appli-
cation’s performance, however, prevents this technique
from being useful in many situations. It does not an-
swer the question of which connections are sufficient for
the application’s needs, nor does it provide informa-
tion necessary for setting application quality parame-
ters. Quantitative information is needed for these deci-
sions.

Benchmarking can be used to provide quantitative
information, and for some applications, a benchmark
will perform similar operations so that the results can
be used with a simple rescaling. In other cases, such
as using a TCP-based benchmark to predict the perfor-
mance of a multimedia application that can handle loss,
it is necessary to develop a model of the network con-
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ditions that caused the benchmark’s performance and
then to determine how the application will perform un-
der those same conditions. A mapping function con-
verting the predicted performance of the benchmark to
a model of the network can be written as M(Bt(N )).
A prediction of application performance based on this
network model can be written An(M(Bt(N ))), where
the subscript n is used to denote a performance predic-
tion for the application A based on a network resource
model.

2.3. Limitations of these techniques

Application- and benchmark-based predictions rely
on sending data across the network to obtain the mea-
surements needed for performance prediction. These
methods have the advantage of treating the network
like a black box, avoiding the complexities inside the
network. But there are a number of limitations that
are shared by these techniques.

2.3.1. Scaling
Sending data between two machines is an excellent

way of measuring the network’s performance between
those two machines. Unfortunately, applications that
can choose between several machines require more in-
formation. Examples include:

• selecting one of several machines for a long-running
application,

• selecting the best n machines for a parallel compu-
tation,

• a real-time scheduling application that forwards
tasks to the best-available machine, and

• selecting machines in a collaborative environment
where information is needed for choosing servers to
work with several desktops distributed across the
network.

Each of these situations requires knowledge of the net-
work performance between more than a single pair of
machines. The minimal amount of information required
to solve these problems is the network performance be-
tween each pair of potential servers and between each
desktop and all of the servers. Because modern environ-
ments allow desktop machines to function as servers,
these problems can only be solved with knowledge of
the communication performance between all pairs of
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Figure 1. Two networks for which performance predictions cannot

be made without knowledge of the topology.

machines. If P is the number of machines in the sys-
tem, this is an O(P 2) problem. Even for the number of
machines that might be found in a small department,
perhaps P = 50, taking a measurement of network per-
formance every five minutes would require almost ten
measurements per second.

2.3.2. Invasiveness
Another fundamental problem of measuring network

performance by sending data across the network is that
it quite naturally disturbs the system it is measuring.
Obtaining a prediction that 10Mbps is available on the
network is useless if the measurement system is using
that 10Mbps 25% of the time.

2.3.3. Topology
Finally, none of these measurement techniques pro-

vide information about topology. At first glance, know-
ing a network’s topology may seem useful only as a way
of improving the scalability of the predictions. However,
it is much more important for accurate predictions of
the performance of parallel applications.

Consider the simple network shown in Figure 1(a).
Assuming no other traffic, each pair of machines in this
network will see the full 100Mbps bandwidth available
in the network. However, the hub connecting the ma-
chines makes the entire network a single data link; if all
of these machines are used to run a single application,
the available bandwidth per machine will be 10Mbps.
On the other hand, if the machines were connected via
a bridge, then the full 100Mbps bandwidth would be
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available to each machine.
Manually providing the topology to the benchmark-

ing tool allows for application-level sharing to be pre-
dicted and could solve the problem with this particular
example. However, even with knowledge of the topol-
ogy, it is sometimes impossible to predict the perfor-
mance of an application with simple end-to-end bench-
marks. In the network depicted in Figure 1(b), there
is no way to determine whether the bandwidth of the
central link is 10 or 100Mbps, because it is irrelevant
to a single network connection. However, once again,
a parallel application can be significantly impacted by
this difference.

Both of these problems can be overcome by per-
forming multiple simultaneous benchmarks to deter-
mine whether there are correlations in the performance
of separate connections. Unfortunately, this also raises
the complexity of the technique to an infeasible O(P !).

2.4. Network-based

Rather than obtaining the performance measurement
from an application, another approach is to obtain it by
querying the network itself. This allows an exact pic-
ture of the status of the entire network to be obtained.
Network topology can be obtained this way, and the
cost is linear in the size of the network. A snapshot
of the network N , consisting of the status of all parts
of the network at the same instant, is denoted N . Us-
ing a history-based prediction of the network snapshot,
Nt, an application’s performance can be predicted as
An(Nt).

The three techniques described here for obtaining a
prediction of an application’s future performance run-
ning on N , denoted Â(N ), are described by the follow-
ing equations:

Â(N ) ≈


At(N ) Application-based
An(Nt) Network-based
An(M(Bt(N ))) Benchmark-based

N real network
N network status snapshot
A application
B benchmark
A(N ) performance of A running on N
At() time series performance prediction of A
An() network model performance prediction of A

y
predicts

x

measure speed on real network

Application

Benchmark

Network

B(N )

B

N

A

A(N )
An(Nt)

An(M(Bt(N )))

At(N )

Figure 2. Conceptual diagram of options for prediction. The

dashed arrows illustrate the actual application being run on the

network as a probe of its status. The solid arrows illustrate the

conceptual paths taken to predict an application’s performance

using data obtained by running the application itself, by obtain-

ing information directly from the network, and by using a bench-

marking program to determine the network’s performance.

M() mapping function inferring network status
from benchmark performance

Figure 2 conceptually illustrates how these tech-
niques interact with the network to predict application
performance.

The network-based technique offers several improve-
ments over the use of benchmarking or application his-
tory.

• Direct measurement of the network’s status allows
the performance of different network operations to
be predicted, without the need for many different
types of benchmarks.

• The network’s topology is acquired directly from the
network, allowing application-level sharing to be pre-
dicted.

• Direct network queries require only O(|N |) opera-
tions, imposing significantly lower load on the net-
work than O(P 2) benchmarks to obtain the same
information.

The major challenge of using network-based pre-
dictions of application performance is the necessity of
developing the performance prediction function An(),
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which maps network status to the application’s perfor-
mance. Our current approach to this problem is to es-
tablish a prediction function by querying the network,
then running and measuring the application. Once
enough measurements are taken, a predictor can be
built that takes the bottleneck link of the network as
input and predicts the application’s performance over
that link.

3. SNMP overview

SNMP was designed to allow network managers to re-
motely observe and adjust network components. It de-
fines the structure of and operations on a database that
is stored on each network component. The database is
organized hierarchically, with portions reserved for vari-
ous standards bodies and vendors. Components are free
to implement only those portions of the hierarchy that
are desired. Each portion of the hierarchy is specified
by a document referred to as a Management Informa-
tion Base (MIB). Although it is more correct to refer
to only the database protocol as SNMP, in common us-
age SNMP is used to describe the collection of MIBs as
well as the protocol. We follow common usage unless
distinctions are needed for clarity. For more informa-
tion about SNMP and MIBs, many books have been
written for use by network managers [18].

3.1. MIB-II

RFC1213 describes the standard MIB, called MIB-
II [10]. It is intended to describe essential information
needed for all network components—including hosts,
routers, and bridges. It provides information about
components’ offered services and networking hardware.
It also provides statistics and information about ma-
jor networking protocols, including IP, TCP, UDP, and
SNMP.

Two parts of this MIB are of interest to us. The first
is the interface table. The row of data for each inter-
face provides its maximum data rate as well as octet
counters, which indicate the number of bytes the in-
terface has sent and received. This information allows
the available bandwidth on the link attached to that
interface to be determined.

Another useful component of this MIB is the IP rout-
ing table, which indicates the route a device will use
to send IP packets to their destination. This is the

most important information for determining a network’s
topology.

3.2. BRIDGE-MIB

The second most important MIB is the BRIDGE-
MIB [6]. This MIB provides information about the
status of an Ethernet bridge, which is used to forward
packets between different portions of a LAN. The in-
teresting part of this MIB is the forwarding database,
which stores the port used to reach each of the Ethernet
addresses the bridge has seen. Because bridges operate
transparently, making queries from this MIB on each
bridge is the only way to obtain the information needed
to construct the topology of an Ethernet LAN.

4. Testbed verification

While there are clear advantages to the network-
based technique, making predictions about end-to-end
operations using low-level information is inherently dif-
ficult [16]. We have verified the network-based tech-
nique against an application-based technique. If the
two techniques offer similar accuracy, the scaling and ef-
ficiency advantages of the network-based method make
it the better choice for performance prediction.

These experiments were performed on a dedicated
testbed where the conditions could be controlled to rep-
resent a wide variety of congestion levels. Because of
the breadth of conditions experienced on networks, it is
important to test prediction techniques at all levels of
congestion [13].

4.1. Experimental setup

The network configuration used in the experiments
is shown in Figure 3. The “application” used was a sim-
ple 1MB data transfer from A to B using TCP. Every
15 seconds, SNMP was used to measure the available
bandwidth on all segments of the path between A and
B, followed immediately by the application’s data trans-
fer. To measure available bandwidth over different av-
eraging periods, the SNMP packet counts were obtained
5, 3, 0.5, and 0 seconds prior to the TCP message.

The 1MB data transfer would be a typical bench-
mark. However, for this experiment, it is considered
an application because it is being used to predict its
own, rather than other applications’, performance. A
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Application

D1 S2

S1 A B D2

Competing Traffic

Figure 3. Topology of the testbed used for the prediction experi-

ments. All links are 100Mb. The hosts are 300Mhz DEC Alphas

and the routers are Cisco 7206 routers.

real application would also involve computation, which
is being ignored for the purpose of this paper.

Synthetic traffic was inserted onto the network be-
tween S1 and D1, and S2 and D2, resulting in two con-
gested links competing for bandwidth with the applica-
tion. The competing traffic was generated using frac-
tional Gaussian noise, a method described by Paxson
for representing realistic aggregate traffic encountered
on networks [12]. The average rate of competing traffic
on each link was chosen between 0Mbps and 100Mbps
(link capacity) and changed an average of every 10 min-
utes.

4.2. Experimental results

Over 65,000 observations were taken during the ex-
periments. To determine the accuracy of the two pre-
diction techniques, 30 sets of 1500 consecutive observa-
tions were chosen at random from the experiment. The
first 1000 were used to fit the time series model. The
prediction technique was then tested over the next 500
observations. The model was refit for each additional
observation, so the time series model was only used to
predict one observation interval ahead. Each prediction
was compared with the next actual observation.

The implementation of the time series predictors that
were used is described by Dinda and O’Hallaron [8].
The autoregression (AR) and sliding window aver-
age (SW) prediction models were used. Wolski exam-
ined several prediction models and found these two to
be useful for network performance prediction [20].
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Figure 4. Cumulative relative error distributions for application-

and network-based prediction in the testbed experiment. Both

32nd-order autoregressive (AR32) and 8 observation sliding win-

dow mean (SW8) predictions are shown. The SNMP available

rate was averaged over 3 seconds for each observation. 95% con-

fidence intervals are shown.

The application prediction was performed on the
series of times recorded for the 1MB data transfer.
The relative error between each step-ahead prediction,
At(N ), and the next actual observation, A(N ), was
recorded.

For the SNMP-based predictions, the time series
models were applied to the series of SNMP available
bandwidth measurements. An() was a piecewise lin-
ear interpolation initially built for each data set with
the 1000 training observations. As the experiment pro-
ceeded, each subsequent observation was added. In a
real system, the calibration would be done less often.
The relative error was calculated between An(Nt) and
A(N ).

A comparison between the relative errors is shown
in Figure 4. The important observation is that there is
little difference between the application- and network-
based techniques. This leads us to conclude that the
network-based prediction technique can be used to pro-
vide network predictions with accuracy comparable to
application-based techniques.

5. Simulated verification

Because it is not possible to reproduce all ranges of
network behavior on a testbed, simulation was used to
explore a wider range of parameters. The simulator al-
lows the replay of actual network traces and simple se-
lection of network bandwidth, producing realistic traffic
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Competing Traffic
Application

Congested link

Figure 5. Simulated network topology. The marked link is the

only bottleneck, resulting in congestion at the router that con-

nects the three hosts.

in a flexible environment.
The NS simulator is one of the most widely used

network simulators available today [1]. This experiment
used a limited subset of the NS simulator’s capabilities.
The background traffic was generated as UDP packets
replaying a tracefile collected from a real network. The
application’s traffic was a simple Reno TCP connection.

The traces used were obtained from the Passive Mea-
surement and Analysis project of the Network Analysis
Infrastructure being developed by the National Labo-
ratory for Applied Network Research [11]. This project
has captured the headers of actual network traffic from
sites across the Internet. The traces used in this exper-
iment were captured at the San Diego Supercomputing
Center’s Internet connections. The traces were collected
during the weeks of July 19, 1999 and August 9, 1999.
The header collection hardware produces perfectly ac-
curate traces, but buffer limitations restrict the length
of each trace to 90 seconds.

The network topology used for this simulation is
shown in Figure 5. This structure was chosen so that
the behavior of TCP under bridge congestion could be
studied. There are no bottlenecks at either the TCP or
trace generating nodes or their connecting links. The
two traffic streams feeding into the single congested link
result in congestion at the bridge, which implements
simple tail-drop queueing. Each trace was simulated
with the bandwidth of the congested link set to 20, 30,
and 40Mbps to provide different levels of congestion.

Because of the short length of the traces, each obser-
vation consisted of 1/2 second to take the “SNMP” mea-
surement (actually done with the simulator trace) and
1/2 second for the TCP connection, followed by a 1/2
second pause before the next observation began. Over
10000 observations were taken using the short data sets.
For each tracefile, the time series models were trained

for the first 8 to 16 observations, and the prediction
quality measured on the remainder.
At(N ) was built using the series of times recorded

for the 1/2 second TCP transfers.
The SNMP-based predictions were done by apply-

ing the time series models to the series of trace-based
“SNMP” available bandwidth measurements. For each
data set, An() was created using the other data sets.

5.1. Heavily congested networks

The simulator allowed the analysis of performance
prediction under much heavier traffic loads than our
first experiment. As a link grows more congested,
the available bandwidth reported by SNMP approaches
zero. The available bandwidth, however, does not indi-
cate the offered load, which is the amount of data appli-
cations are attempting to send through the link. For the
same low available bandwidth measurement, the offered
load may range from the link’s bandwidth to orders of
magnitude higher.

If the link is only lightly congested, a path for which
SNMP reports little available bandwidth may actu-
ally provide an application with a higher rate than the
amount available. This behavior can occur if the com-
peting traffic’s rate is reduced in response to the new
application’s traffic.

If the offered load is significantly higher than the
link’s bandwidth, then it will be hard to get any data
through. The router preceding the congested link will
be dropping many packets already, and the competing
traffic will be just as quick as the new application to
use any bandwidth that becomes available.

These behaviors should be represented in An() and
are dependent on the type of network and competing
traffic involved. In these cases, additional information
may be obtained through the count of dropped pack-
ets, which is also available through SNMP. However,
it is doubtful that such a link would be used for any
performance-sensitive distributed applications, there-
fore we have not examined the usefulness of incorpo-
rating this information into the model.

5.2. Results

Our initial analysis of the data revealed an interest-
ing effect of the heavy congestion generated by some
traces. Although the level of congestion produced by



8 B. Lowekamp et al. / Direct Queries for Network Properties

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n 

of
 O

bs
er

va
tio

ns

Relative Error

Simulation Experiment with Heavy Congestion

SW8-all-app
SW8-all-snmp

Figure 6. Relative error distribution with 95% confidence inter-

vals for the simulation experiment including observations during

extremely heavy congestion.

the simulation was sometimes unrealistic, because the
traffic in the traces would have adapted to the higher
congestion level, heavy congestion does occur in real
networks. The data shown in Figure 6 was surprising
because there is a significant difference between the two
prediction techniques and because the accuracy of both
techniques is less than seen in most other experiments.

Studying the data revealed that the majority of the
errors occurred when the network was under extremely
heavy congestion and that the network-based technique
was more prone to these errors than the application-
based technique. This discrepancy is believed to be
due to the network-based technique’s inability to mea-
sure the offered load on a congested link, whereas the
application-based technique provides a history indicat-
ing whether the link is only marginally congested or se-
riously overloaded. Because these errors only appeared
under extreme congestion and because such scenarios
are of little interest to most applications, observations
where less than 1% of the link’s bandwidth was avail-
able were removed from the data used in Figure 7.

Figure 7 shows the aggregate results from all of the
simulations. The simulation results also confirm that
the accuracies of the application- and network-based
techniques are very similar. It is interesting to note that
in the simulation results, the results group according to
the time series model chosen, whereas in the testbed
results in Figure 4, the best results from each technique
were with different time series models. This merely
serves to illustrate that it is very difficult to select the
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Figure 7. Cumulative relative error distributions with 95% con-

fidence intervals for application- and network-based prediction

in the simulation experiment. Both 16th-order autoregressive

(AR16) and 8 observation sliding window mean (SW8) predic-

tions are shown.

most appropriate model. Prediction systems such as
RPS [8] compute several time series models and report
results from the one with the lowest error. Therefore, it
is probably most appropriate to consider only the top
curves from each technique.

6. Statistical metrics

The similarity in the results from the two techniques
is very promising, because it indicates that a more ef-
ficient technique offers the same accuracy as the estab-
lished technique for measuring network performance.
The confidence intervals in Figures 4 and 7 indicate
that both techniques have similar variability, but the
differences between the testbed and simulation results
require some explanation.

The results from the testbed experiment were divided
into separate independent data sets. Because the back-
ground traffic was changing continuously, each data set
was taken under different network conditions. This ac-
counts for much of the variability—it is much easier to
make accurate predictions on a lightly congested net-
work versus a heavily congested network. For the sim-
ulation results, however, the runs produced using the
individual tracefiles were too short to produce enough
data for a CDF. Instead, the distributions were created
by randomly dividing the data from all simulation runs
amongst 30 sets. This randomization homogenized the
data and removed much of the variability from the final
result.



B. Lowekamp et al. / Direct Queries for Network Properties 9

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-6 -5 -4 -3 -2 -1 0 1 2 3 4

N
et

w
or

k-
ba

se
d 

Q
ua

nt
ile

Application-based Quantile

Quantile-Quantile Plot for AR16 Predictor

Figure 8. Quantile-quantile plot of the CDFs for each prediction

technique. This is a plot of the logarithms of the values so that
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reference.

It is very important to consider the differences in
predictability as network conditions change, as seen in
Figure 4. Understanding and reporting to the applica-
tion the accuracy of a prediction made under particular
network conditions is just as important as making the
prediction itself.

The CDF plots of the results tend to obscure the
results for both low and high relative errors, in the
first case because the distribution rises quickly and in
the second because the distribution is long-tailed. To
compare the two techniques over the entire distribution,
Figure 8 presents a quantile-quantile plot for the sim-
ulation experiment. The linearity of the plot indicates
that the distributions are nearly identical.

7. Topology discovery

Knowledge of network topology is essential for ap-
plication mapping because the links that are shared
by different components of the same application (in-
ternal sharing) have a large effect on the performance
of that application. Topology knowledge also simplifies
scheduling algorithms because it is possible to sched-
ule in a hierarchical fashion, rather than analyzing all
combinations of machines. Finally, it is impossible to
use network-based techniques without first learning the
topology to determine which components are involved
in the path about which queries are being made.

Topology discovery is difficult because user-transpar-
ency has been a great driving force behind the success

(a)

Bridge

Router

Host

(c)

(b)

Figure 9. A view of networking at different levels of detail. (a)

The view presented to the user. (b) The view at the IP routing

layer, where each host and router explicitly forwards packets to

the next component in the path. (c) The view including Ether-

net bridges, where each bridge learns where the hosts and routers

are and transparently forwards the packets towards their desti-

nations.

of networking. As a result, there are no good protocols
for determining topology. However, the necessary in-
formation can be extracted using SNMP with enough
perseverance.

7.1. Network structure

Figure 9(a) shows the network view that is presented
to the user and that is preserved by most program-
ming libraries. In Figure 9(b), the IP routers connecting
these machines are exposed. These are the easiest com-
ponents to detect. In fact, the traceroute program
can be used to detect routers between hosts.

The second level of transparency is exposed in Fig-
ure 9(c). Here, the bridges that form the Ethernet
LANs connecting the machines are exposed. This is the
most difficult level of topology to penetrate, although
it is the most common LAN infrastructure. The diffi-
culty comes from the beauty of the transparent bridg-
ing protocol. The algorithms that the bridges use to
determine how to form the LAN and how to forward
packets require no global knowledge, nor do the hosts
talk directly to the bridges [14]. Thus, the goal of trans-
parency is completely met, at the expense of the ease
of determining the topology from the bridges. It should
be noted that modern networks are typically built with
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Missed Bridges

Heavy Traffic

A B

Figure 10. An example of a network configuration where missing

bridges can produce misleading results. In this case, missing the

two bridges between A and B misses the congested network link

between them and may vastly overestimate the available band-

width.

“switches,” which are essentially bridges with many
ports.

Despite the difficulties, it is necessary to locate all
components of a network before using network-based
queries on that network. Figure 10 shows an example
where available bandwidth predictions will be useless
because a congested link occurs between two undiscov-
ered bridges.

7.2. IP routing

IP routing topology is easy to determine because
each host and router uses a routing table that lists the
next hop on the route used to reach each destination.
SNMP can obtain this table, which makes determining
IP routing topology a simple matter of following the
routers hop-to-hop from source to destination.

7.3. Bridged Ethernet

The Ethernet bridging algorithm is much more com-
plex than the IP routing algorithm. A bridge learns
where to forward packets by listening to all traffic on
the links to which it is attached. Whenever it sees
a packet, it stores its source address and the link it
was received on. This information forms the forward-
ing database used when forwarding packets to their
destination. When the bridge receives a packet from
a destination not listed in its forwarding database, it
“floods” this packet on all of its ports. When the un-
known machine responds to this packet, the bridge adds
it to its database. This algorithm is known as transpar-

ent bridging, which is currently used almost exclusively
on Ethernet LANs. More information can be found in
Perlman’s book [14].

Because this algorithm is completely transparent to
the hosts, it is difficult to find bridges automatically.
One solution is to obtain a list of bridges from an ex-
ternal source, such as the local network manager. Sec-
ondly, because bridges only learn a host’s location when
they receive a packet from that host, care must be taken
to ensure that the forwarding entries are present in the
bridge’s database.

This situation motivates a rather complex algorithm
for determining the bridging topology. Before begin-
ning, the routing topology must be determined, as in
Figure 9(b). Once that has been accomplished, the
bridging topology, as found within each cloud in that
diagram, can be determined.

The algorithm begins with a set of endpoints, E, con-
sisting of all of the hosts on the Ethernet for which the
topology is desired, as well as the routers used to con-
nect this Ethernet to other networks. Also known is
the set of bridges, B, used in this network. Bridging
topology is defined to be a tree, with the members of
E forming the leaves and the members of B forming
the internal vertices. The basic approach to determin-
ing this topology is to go through the members of B,
querying for the ports to which they forward packets
routed to members of E ∪ B. This information tells
us the edge of each vertex that is used to reach every
other vertex. This knowledge is sufficient to construct
the complete topology of the tree.

The difficulty of this algorithm is not in deriving
the topology from the bridges’ forwarding databases.
Rather, it is in ensuring that the needed entries exist in
the forwarding database. A two phase approach is used
to obtain this information with reasonable efficiency.

Because there are O(|B|(|E|+ |B|)) queries to make,
and implementation difficulties make each query time
consuming, it is important to reduce the number of
queries whenever possible. The goal of the first phase
is to determine the set of nodes, Bu ⊆ B, that are used
in the network topology connecting E. This is done by
querying each member of B for its forwarding port for
each member of E. If the bridge uses the same port to
reach all members of E, then the bridge cannot be part
of the topology. If a bridge forwards packets to E using
different ports, however, then it is needed to form the
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poconos

asbury-park

3604-1cl2-2
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cl6-2

cl3-1

zeno

backbone-1

cl7-1

adonis gs208

cl6-1

cl2-1

mojave

cobain

Figure 11. Topology determined from the CMU Computer Sci-

ence Department’s network. The process was begun with the

hosts seen here and the 44 bridges used in our department. Note

that cobain and man-4 were found to share a single Ethernet

through a hub. The actual department network is much more

complex—the algorithm prunes the graph to include only those

bridges used to connect the set of hosts being used.

interconnection topology.
Because bridges learn passively, each bridge in B

must have seen a packet from each member of E to
have an entry in its forwarding database for that host.
To ensure that this table is complete, all members of
E periodically ping all other members of E before and
during the data collection. This guarantees that if a
bridge is on the topology between any two members of
E, it will have seen packets from both members and will
have their entries in its forwarding database. Note that
it is generally not possible for users to have routers send
pings, but routers do respond to pings, so if all hosts
are sending pings to a router, the router’s replies to the
pings will ensure that its entry is present in the forward-
ing databases of the bridges.

Once Bu has been determined, the second phase of
this algorithm begins by expanding the list of machines
being pinged by the hosts to E ∪ Bu. This forces the
bridges to learn about each other’s location, informa-
tion not normally needed for transparent bridging. Fi-
nally, all members of Bu are queried for where they are
forwarding packets to all other members of Bu.

Following the completion of this algorithm, the ports
used by each bridge to forward packets to E ∪ Bu are
known. Because the bridging topology is defined to use
a tree, it is easy to extend this information to complete
the topology.

Figure 11 shows the bridging topology between sev-
eral machines at CMU. This structure was determined
using the above algorithm, beginning with a list of the
44 bridges used in our departmental LAN. The correct-
ness of this topology was verified by our network man-
ager after the algorithm was run.

The O(|B|(|B| + |E|)) complexity of this algorithm
and the high cost of each access to a bridge’s forwarding
database make this algorithm impractical for runtime
use. For example, the topology in Figure 11 took ap-
proximately 30 minutes to discover. Fortunately, typi-
cal Ethernet LANs do not change topology often, and it
is easier to verify that the topology is still accurate than
to discover it. For these reasons, the bridging topology
should be stored in a database where applications and
prediction systems can make use of it. Periodic verifica-
tion and rediscovery can be used to keep the database
current.

8. Practical considerations

Our research has demonstrated that SNMP, already
supported by almost all of the current networking in-
frastructure, is sufficient for obtaining the information
needed to determine and predict performance directly
from the network. Although it is not an ideal interface
for this purpose, it allows the network-based approach
to performance prediction to be explored and utilized
on existing networks. Demonstrating the value of this
approach by using it in real systems and applications
should result in the development of more appropriate
interfaces for network components. However, both ad-
ministrative and technical considerations must be ad-
dressed to provide a better interface for performance
prediction purposes.

The administrative complication is primarily acces-
sibility. Typically, SNMP access is only allowed from
machines on the local network, and it is usually impos-
sible to make SNMP queries to network components on
an ISP’s network. Security and privacy are the two pri-
mary reasons for this. Security is actually a technical
concern; because the designers of SNMP were unable
to agree on a workable security protocol, there is little
security in current implementations, therefore a mini-
mal security level is achieved by restricting access to
local hosts. ISP’s are generally concerned about pri-
vacy, not wishing to divulge information about the con-
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gestion levels of their services. Furthermore, because
SNMP queries can be expensive, no one wants to open
their network up to excessive load or even denial-of-
service attacks with SNMP. We are currently pursuing
combining network-based data with benchmark-based
data to provide predictions in environments where di-
rect network queries are only available for portions of
the network.

Although RFCs describe the behavior of SNMP im-
plementations, the standards and their implementa-
tions have not resulted in consistent interfaces between
different manufacturers. For instance, the forwarding
databases in Ethernet bridges are particularly trouble-
some. Some allow queries to be made for the forwarding
port of a specific address. Other implementations are
designed only for traversal, requiring the same query
to be reformulated as a query for the subsequent entry
from the numerically preceding address. Furthermore,
some bridges remove the forwarding database if queries
are made to it too rapidly, apparently as a security mea-
sure.

Finally, although SNMP provides much of the infor-
mation needed for distributed computing, it is difficult
to get it in the form required. For example, there are
traffic counters for each port, but determining a traf-
fic rate requires multiple, carefully timed queries. It
would be much more appropriate to have the router
calculate its own time-averaged rate. Preliminary work
toward this goal is discussed in the APMMON Internet-
Draft [7].

9. Related work

A variety of systems exist for providing network
status information. NWS [21] and Prophet [19] pro-
vide applications with benchmark-based predictions.
SPAND [17] records similar data by storing applica-
tions’ actual performance during execution and making
this data available to help future applications.

All prediction systems described here utilize time se-
ries prediction techniques [3]. Wolski has studied sev-
eral different time series models for their usefulness in
predicting network performance [20].

SNMP has much broader uses than those that are
described here. It is used to control and monitor a wide
range of network resource properties [18]. Busby has
explored using SNMP to gather information about both

network and CPU resource as an addition to NWS [4].
The techniques evaluated in this paper for SNMP-based
bandwidth measurement were developed for the Remos
system [9].

Recent network research has focused on modeling the
self-similarity in network traffic, and these models may
lead to more realistic traffic than Poisson processes. We
used fractional Gaussian noise to generate self-similar
traffic for our experiments [12]. More realistic wavelet
models have been investigated more recently [15], and
we are examining using them on our testbed to generate
synthetic traces modeled after actual network packet
traces.

10. Conclusions

Tools for discovering network performance and topol-
ogy are an important part of the support infrastructure
for distributed computing. This paper demonstrates
that the network-based approach has significant advan-
tages over the benchmark-based approach for scaling
and topology discovery, without sacrificing accuracy.
Importantly, this approach can be implemented today,
using the SNMP structure already included in network-
ing hardware for the purpose of network management.
The benefits of the network-based approach outweigh
the inherent limitations of using low-level information
to predict end-to-end performance.

Major challenges remain for the distributed comput-
ing community to ensure the availability of the infor-
mation needed for network-based predictions. Network
administrators and companies must be encouraged to
provide easier access to the performance data needed to
properly schedule applications. Furthermore, working
with the networking community may lead towards the
incorporation of more beneficial and convenient features
for performance measurement into SNMP and network
devices.

The techniques described here are being imple-
mented in the Remos system [9]. Remos is available
from our website,
http://www.cs.cmu.edu/Groups/CMCL/remulac.
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