
AutoJoin: Generalizing an Example into an EDM query

Jack Mostow and Bao Hong (Lucas) Tan

mostow@cs.cmu.edu, btan@andrew.cmu.edu
Project LISTEN, School of Computer Science, Carnegie Mellon University

Abstract. This paper describes an implemented method to generalize an
example tutor interaction into a query to retrieve similarly related sets of events.
It infers WHERE clauses to equate repeated values unlikely to match by accident.

The Session Browser [1] shown in Figure 1 is an EDM tool to view data retrieved by
querying a database of events logged by a tutor. It displays retrieved events in a context
tree of enclosing events, with a 1-line summary of the database record for each event.

Figure 1: Event context tree highlighting two events selected by the user to AutoJoin

This brief example occurred in an activity to teach children to ask themselves questions
about the text they read. The first highlighted event summarizes a child’s multiple-choice
response to a prompt to fill in the rest of a question about the text. The second event
describes the child’s spoken response to a prompt to speak the completed question aloud.

Often we want a query to retrieve examples similar to a current example. Complex
queries are hard to construct, so we developed AutoJoin to generate them automatically.
AutoJoin generalizes the two highlighted events into a query that finds “similar” cases, in
this case a multiple choice step immediately followed by a free-form response step:
SELECT * FROM

 multiple_choice_question mcq,

 sentence_encounter se

WHERE mcq.activity_directory = se.activity_directory

 /* '..\data\stories\PROTOTYPE Country Mouse auto-questions new

 split screen' */

AND mcq.end_time = se.step_start_time /* '20090331103359' (03/31/2009

 10:33:59 AM) */

AND mcq.machine_name = se.machine_name /* 'LISTEN07-211' */

AND mcq.story_encounter_start_time = se.story_encounter_start_time

 /* '20090331102336' (03/31/2009 10:23:36 AM) */

AND mcq.user_id = se.user_id /* 'mKJ9-5-2001-07-23' */;

 (The example here is simple for brevity; AutoJoin can generalize from more events too.)

AutoJoin constructs a query as a join of the tables where the selected events were logged.
It abbreviates each table by its initials, e.g. multiple_choice_question as mcq

and infers WHERE clauses by equating field values that show up more than once in those
events. The comments, in green, show which values it abstracted into variables; they
help the user understand the query and fix over-generalizations easily by uncommenting.

307

AutoJoin assumes that (1) unlikely matches matter, but (2) their specific values do not, so
it (1) infers that the variables must be equal, but (2) abstracts away their specific values.
When (1) is wrong, it under-generalizes; when (2) is wrong, it over-generalizes. To
avoid under-generalizing, it uses heuristics to prevent meaningless matches. It gauges the
likelihood of accidental match from how often the matching value occurs in each field.
For instance, NULL values are frequent in many fields due to various reasons, one of
which is its use as a no-value indicator. Thus NULL values in two such fields are likely
to match by accident. In contrast, data types such as strings and dates have a large range
of possible values. Assuming that they are unlikely to match by accident saves time by
not bothering to estimate the frequency of the matching value in the two table columns.

Computing how often a given value occurs in a table column takes time for a large table,
so AutoJoin estimates it from a sample of 400 rows. This sample is fast to retrieve but
may be unrepresentative, especially if the column is sorted. Sampling blocks of 20 rows
at 20 randomly chosen offsets is more reliable, but slow enough to be worth caching.

Another heuristic to avoid under-generalizing classifies certain columns as “non-cross-
match” and compares them only with columns of the same name in other tables. For
example, the table story_encounter has non-cross-match column story_count,
and sentence_encounter has non-cross-match columns sentence_count and
word_count. Since story_count, sentence_count, and word_count count
different types of things, we assume it does not make sense to compare them. In contrast,
comparing start_time and end_time from different tables does make sense.

The “non-cross-match” heuristic eliminates additional spurious matches, but relies on the
naming convention it exploits, and on the user’s knowledge of which fields make sense to
compare. In contrast, estimating the frequency of matching values does not depend on
column names or knowledge of the database schema, so it’s a more general method.

We have identified the EDM task of generalizing from a single example of tutorial
interaction, described AutoJoin’s simple but powerful heuristics, and reported their
implementation in the Session Browser. By systematically generating clauses we might
omit or mistype, it helps us build complex joins much faster than by hand. It’s limited in
what it can notice, and it sometimes generalizes accidental matches, so we check its
output, but checking is faster than writing queries. AutoJoin may also apply to many
non-EDM domains. It seems too simple to be novel, but we have not found it elsewhere.

Acknowledgements: This work was supported by the Institute of Education Sciences, U.S. Department of
Education, through Grant R305B070458, R305A080157, and R305A080628 to Carnegie Mellon
University. The opinions expressed are those of the authors and do not necessarily represent the views of
the Institute or the U.S. Department of Education. We thank Session Browser users for testing AutoJoin,
and the educators, students, and LISTENers who helped generate, collect, and analyze our data.

References (also see Publications page at www.cs.cmu.edu/~listen)

[1] Mostow, J., J. Beck, A. Cuneo, E. Gouvea, C. Heiner, and O. Juarez. Lessons from
Project LISTEN's Session Browser. In C. Romero, et al., Editors, Handbook of

Educational Data Mining. Taylor & Francis Group, in press.

308

www.cs.cmu.edu/~listen

