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Abstract 

How can an automated tutor detect children’s off-task 

utterances? To answer this question, we trained SVM 

classifiers on a corpus of 495 children’s 36,492 computer-

assisted oral reading utterances. On a test set of 620 utterances 

by 10 held-out readers, the classifier correctly detected 88% of 

off-task utterances and misclassified 17% of on-task utterances 

as off-task. As a test of generality, we applied the same 

classifier to 20 children’s 410 responses to vocabulary 

questions. The classifier detected 84% of off-task utterances 

but misclassified 57% of on-task utterances. Acoustic and 

lexical features helped detected off-task speech in both tasks. 

Index Terms: off-task speech detection, acoustic feature, 

lexical feature, children speech  

1. Introduction 

Off-task speech is speech that strays away from an intended 

task. It occurs in many dialog applications, such as intelligent 

tutors [1], virtual games [2]¸ health communication systems 

[3] and human-robot cooperation [4]. On the one hand, an 

automated agent capable of detecting off-task speech could 

track users’ attention and maintain natural dialogs by bringing 

a user back on task [5, 6]. Also, knowledge of where off-task 

speech events are likely to have occurred can help in analyzing 

automatic speech recognition (ASR) errors. On the other hand, 

off-task speech detection faces challenges of informal 

conversational style and potentially unbounded scope [3] that 

hamper accurate speech recognition. Despite the opportunities 

and challenges presented by off-task speech, we are not aware 

of previous research explicitly focused on it. 

The goal of our research is to address this gap. As a step 

towards this goal, we start by detecting and analyzing off-task 

speech in children’s interactions with an automated reading 

tutor. Section 2 relates this goal to prior work; Sections 3 and 

4 describe our data and features, respectively; Section 5 

presents results; Section 6 discusses their generality; and 

Section 7 concludes. 

2. Relation to prior work 

Off-task speech is similar to but distinct from some previously 

studied phenomena. 

Off-task speech resembles out-of-domain (OOD) speech 

[7] in referring to information outside the scope of the system. 

For example, a user may ask a travel system When is the next 

train from London to Aldeburgh (which has no train service)? 

Even though this query is out of scope, the utterance asks for 

travel information and hence is on-task. Work on OOD has not 

explicitly addressed off-task speech phenomena such as a user 

talking to himself, speaking to a third party, uttering nonsense, 

and even humming. Hence existing OOD methods focus 

mostly on word cues for topic modeling, while off-task speech 

detection uses both acoustic and lexical features.  

Off-task speech includes speech addressed to a third party 

[8], but is not restricted to it. For example, off-task speech 

addressed to the system during oral reading includes questions 

such as Can I stop here? and comments about classmates. 

Off-task speech resembles spontaneous speech [9] in 

speaking style, but spontaneous speech is not necessarily off-

task. For instance, children’s on-task responses to vocabulary 

questions often involve disorganized spontaneous speech. 

3. Two tasks 

We now describe our data sets and annotation scheme for 

children’s oral reading and responses to vocabulary questions.  

3.1. Oral reading and automatic annotation 

The oral reading corpus consists of utterances collected by 

Project LISTEN’s Reading Tutor [10] during children reading 

story sentences out loud. The training data contains 36,492 

utterances spoken by 495 children totaling 43 hours of audio 

recordings. The test data contains 659 utterances spoken by 10 

randomly chosen children who do not appear in the training 

data, with total audio length of 1 hour 3 minutes. 

For oral reading, off-task means the utterance was not an 

attempt to read the sentence text. Notice that on-task 

utterances include not only correct readings, but also disfluent 

or even incorrect readings.  

To train and test classifiers, we needed to label the data. 

Rather than hand-labeling so much training data as on- or off-

task, we use the following “deviation length” heuristic to find 

off-task speech in already transcribed oral reading. First we 

align each word in a transcribed utterance against the sentence 

text using a dynamic programming algorithm similar to edit 

distance, but with lower penalties for repetitions. Figure 1 

shows a typical alignment result.  

 

Figure 1: Alignment with disfluency and misreading. 

We define a sequence of n transcribed words as a deviation 

if none of them match the text words they are aligned against, 

except for isolated words (e.g., he in oh he did?), which we 

assume match by accident. To recognize misreading (e.g., 

gave as give), we measure the length of the deviation as the 

min of orthographic and phonetic edit distances between non-

matching words, and relative deviation length as deviation 

length / transcription length. If this ratio exceeds 0.5, we 

labeled the utterance as off-task. If it falls between 0.36 and 

0.5, we labeled it as partially off-task and excluded it from the 

current study. We tuned the thresholds on a separate 

development set of 467 utterances to maximize Kappa 

agreement (0.93) compared to hand labels by one rater. Our 

automated method labeled 4,236 (12%) utterances as off-task, 

29,196 as on-task, and the other 3,060 as partial off-task. 

Two annotators independently labeled the 659 test 



utterances for the oral reading task with inter-rater agreement 

of Kappa = 0.96. They labeled 51 utterances as off-task, 569 

as on-task, and 31 as partial off-task, which we excluded from 

analysis, along with the 8 where the raters disagreed. 

3.2. Vocabulary task 

The vocabulary task prompted children to explain the meaning 

of a word or to compare semantic relatedness between words. 

As Figure 2 shows, the vocabulary questions elicited 

utterances less constrained than oral reading. 

 

Figure 2: Example responses to vocabulary questions. 

An undergraduate summer intern annotated the vocabulary 

responses with finer grained categories such as correct answer 

(as in Figure 2), wrong answer (e.g., a burden means you're a 

thief), no response, playing (e.g., Haha! Oh oh!), and talking 

back (as in Figure 2). We categorized correct and wrong 

answers as on-task, and the rest as off-task. The first author 

later independently annotated the utterances using only on- 

and off-task labels. The Kappa score was 0.83, with most 

disagreement occurring on the wrong answer category. After 

filtering out the 23 utterances with annotator disagreement, we 

obtained 410 utterances, 139 (34%) of them labeled off-task. 

We used these data as a second test set to investigate the 

generality of models trained on off-task oral reading. 

Oral reading and vocabulary tasks are dissimilar in terms 

of task difficulty for the user. Oral reading requires mostly 

recognition of words (although expressive reading requires 

some comprehension). In contrast, explaining the meaning of a 

word requires both understanding the word and translating that 

mental representation into speech. This difference in cognitive 

load is reflected in the percentage of off-task utterances in our 

data. Only 12% of oral reading utterances are off-task, versus 

34% for the vocabulary task. 

4. Features used 

To characterize the content of off-task speech, i.e., what was 

said, we used lexical features of ASR output. To characterize 

speaking style, i.e., how it was said, we used acoustic features 

computed directly from the speech signal, without ASR. 

4.1. Acoustic features and feature selection 

Table 1 summarizes five groups of low level acoustic 

descriptors extracted using Praat [11] scripts. Before 

extracting features from the acoustic descriptors, we used a 

Praat script to segment each audio recording into voiced, 

unvoiced, and silence regions. For each region and entire 

utterance, we calculated statistics to summarize frame based 

acoustic descriptor values, including mean, minimum, 

maximum, quartiles, and the first four moments. 

Training a classifier with 1,250 acoustic features on only 

4,236 off-task instances is doomed to overfit. Therefore we 

applied the Adaboost learning algorithm to choose the 50 

features most informative for oral reading data. We used the 

Adaboost algorithm to overcome the imbalanced training data 

problem (4,236 off-task vs. 29,196 on-task) by boosting the 

weight on errors made on the minority class. Table 2 lists the 

top 10 features ranked by descending absolute weight.  

Table 1. Five groups of low level acoustic descriptors. 

Category Members 

Energy Intensity, perceptual loudness 

Spectrum Pitch, first four formant frequencies with 

bandwidths, long-term average spectrum 

(LTAS)  

Cepstrum 12 mel frequency cepstral coefficients 

(MFCC) 

Voice quality Jitter, shimmer, harmonics-to-noise ratio, 

degree of voice breaks 

Miscellaneous Zero crossing rate, pulses 

Table 2. The top 10 acoustic features. 

Feature name Weight 

Pitch – 3rd quartile 0.079 

Loudness (voiced) – 3rd moment 0.072 

Degree of voice breaks 0.068 

Mean harmonics-to-noise ratio -0.061 

Duration -0.053 

Shimmer  0.049 

4th MFCC (voiced) – variance 0.044 

Number of pulse periods -0.039 

Spectrum (200-1000Hz) – mean skewness 0.038 

LTAS (0-8000Hz) – 4th moment 0.034 

4.2. Lexical features 

Lexical features characterize the content of an utterance. We 

extracted lexical features from the Sphinx-3 speech 

recognizer’s output and confidence scores, using a 32 

Gaussian mixture acoustic model with vocal tract length 

normalization, trained on 43 hours of children’s oral reading 

data (the same training corpus described in Section 3.1). 

We designed language models for speech recognition to 

cover both the task domain and frequent off-task language, so 

they vary by task. Our approach was to interpolate a task 

language model with a trigram language model built from an 

off-task corpus. For oral reading, the task language model 

consisted simply of the trigrams in the sentence being read. 

Since we do not have enough data to train a language model 

for the vocabulary task, we used a unigram language model 

consisting of the words in the definitions and synonyms of the 

target vocabulary word in Wordsmyth Children’s Dictionary 

[12] and WordNet [13], along with words we expected in 

children’s word explanations, such as means and something. 

We trained a general off-task trigram language model from 

transcriptions of the 4,236 off-task utterances in the oral 

reading training data, which comprise 18,040 tokens of 2,012 

distinct word types. To avoid overfitting, our off-task language 

model includes just the 200 most frequent of these word types, 

which we call off-task words. They covered 74% of the off-

task tokens and occurred in 86% of the off-task utterances in 

the training data. The 10 most frequent words were I (860 

tokens), you (552), it (397), to (354), the (350), what (331), on 

(300), go (283), this (271), and that (262). For these 10 words, 

the Kullback–Leibler divergence (measured in bits) 

, where the functions  

and  represent the probability distributions of the 10 

words in off-task and on-task utterances, respectively. 

We computed three lexical features of each ASR 

hypothesis: (1) percentage of off-task words, (2) percentage of 

off-task words with ASR confidence scores higher than a 

threshold, and (3) percentage of on-task words with 

confidence scores lower than a threshold. We used the 



threshold to decide whether to classify a hypothesis word as 

recognized correctly. To minimize classification error, we 

tuned this threshold on the oral reading training data. 

Percentage of off-task words contributes the most to detection 

rate. This single feature detects 55% of the off-task speech. On 

the other hand, percentage of off-task words with confidence 

scores higher than a threshold contributes the most to 

classifying on-task speech (96%). 

5. Evaluation 

To study the predictive power of the proposed features, we 

trained SVM classifiers and tested them on oral reading and 

vocabulary tasks, using LIBSVM-3.0 [14] with its radial basis 

function kernel and default settings except for the data 

weighting parameters. We used receiver operating 

characteristic (ROC) curves to summarize performance of the 

trained classifiers for 21 threshold values ranging from -2 to 2. 

There were many fewer off-task utterances than on-task 

utterances in our data (4,236 vs. 29,196 in oral reading training 

data and 51 vs. 569 in oral reading test data). A learning 

algorithm that aims to maximize overall classification 

accuracy is likely to fail on the minority class [15]. The direct 

impact of the data imbalance on our study was that using the 

natural distribution of the data to train an SVM classifier 

yielded a degenerate solution that classified every utterance as 

on-task. Such a result is useless, despite its overall 

classification accuracy of 92% on oral reading test data. To 

solve this problem, we used LIBSVM’s data weighting 

parameter to assign different relative weights to off- and on-

task utterances. By adjusting these weights to maximize the 

area under the ROC curve, we obtained a classifier that 

weighted off-task data 6 times as much as on-task data. It 

detected 88% of off-task utterances and falsely classified 17% 

of on-task utterances. Figure 3 shows the ROC curves for oral 

reading test data with off-task training utterances weighted 1, 

2, or 6 times as much as on-task utterances. When weight was 

1 (i.e., using the original data distribution), only one of the 

decision thresholds tested gave non-degenerate results; all 

other points clustered at [0,0], and [1,1]. The shape of the 

ROC curves did not change much for weights higher than 2. 

 

Figure 3: ROC curves on oral reading test data of 

classifiers trained with different data weights. 

Figure 4 shows how the oral reading off-task detector 

performed on test data for the oral reading and vocabulary 

tasks. Transferring this detector to the vocabulary task reduced 

detection only slightly, from 88% to 84%, but increased the 

false positive rate (percentage of on-task speech misclassified 

as off-task) from 17% to 57%. Figure 4 also shows 

performance of classifiers trained on oral reading using only 

acoustic features or only lexical features, discussed shortly. 

To evaluate the effect of training on the 410 vocabulary 

utterances using the same features, we used leave-one-out 

cross validation. Compared to classifiers trained on oral 

reading, cross-validated performance on the vocabulary task 

showed similar ROC curves for training on all features or 

lexical features only. That is, training on a small amount of 

vocabulary data did just as well as training on oral reading 

data. Using only acoustic features, training on vocabulary data 

vs. oral reading detected almost the same percentage of off-

task vocabulary utterances (81% vs. 82%), but with a lower 

false positive rate (57% vs. 70%). 

 

Figure 4: ROC curves of classification results on oral 

reading and vocabulary tasks. 

6. Discussion 

The classifier trained on oral reading detected a similar 

percentage of off-task speech on the vocabulary task, but 

performed much less accurately on the on-task speech. Why? 

The similar detection rates for off-task speech in oral 

reading (84%) and vocabulary responses (82%) using only 

acoustic features suggest that their acoustic characteristics are 

similar. In contrast, the marked difference in false positive 

rates for oral reading (22%) and vocabulary (70%) suggests a 

difference in speaking style. Oral reading is easier than the 

vocabulary task because the word sequence only needs to be 

read rather than composed. The spontaneous speaking style of 

vocabulary responses shares characteristics of off-task speech 

that make it difficult to distinguish from on-task speech. 

Some types of off-task utterances not observed in the 

training data occurred in vocabulary responses: singing, 

humming, and null responses (i.e., audio recordings containing 

background noise but no user vocalization). Yet the acoustic 

features generalized to these unseen types. 100% of the 8 

utterances with humming or singing and 98% of the 65 null 

responses were correctly classified as off-task using only 

acoustic features. This finding needs to be replicated on other 

tasks, but provides some reason to hope for the existence of 

task-independent acoustic features for detecting some types of 

off-task speech. 

The strength of a language model depends on its ability to 

predict which words the speaker will utter, and in what order. 

Thus our language model of oral reading is very strong 

because both the text words and their order are known, and 

even disfluent reading deviates from them only somewhat. The 



predictability of the on-task utterances directly affects 

accuracy of ASR hypotheses and subsequently the quality of 

the lexical features extracted from the hypotheses.  

Using lexical features only, the false positive rate for the 

vocabulary task was 56% compared to 19% for oral reading. 

Unlike the highly predictable on-task utterances in oral 

reading, explanations of word meaning vary both lexically and 

syntactically. For example, many children used the word 

heavy to explain burden. Although heavy often characterizes 

burden, it did not appear in either of the two definitions we 

used. Wrong but on-task answers are even harder to predict 

because they may not even include any content words 

semantically related to the target vocabulary word. Overall our 

lexicon for the vocabulary task covered only 40% of the on-

task tokens.  With few children’s vocabulary responses to train 

a language model on, we used a unigram language model. Due 

to the weak language model, ASR performance was poor.  

The words used in off-task speech are less predictable than 

in oral reading, but surprisingly predictable compared to 

vocabulary explanations, and the quality of our lexical features 

depends on the predictability of its words. The 200 most 

frequent off-task words extracted from the training data 

covered 77% of the word tokens in the off-task test data for 

oral reading, and 65% of the off-task vocabulary responses. 

The off-task detection rate using only lexical features was 

comparable for the two tasks: 78% for oral reading and 79% 

for vocabulary responses. For the vocabulary task, off-task 

words that has always occurred in correctly detected off-task 

utterances include can’t, gonna, ha, mister, and spell.  

Table 3 summarizes ASR performance for on- and off-task 

speech in the oral reading and vocabulary tasks in terms of 

word error rate (# insertions, deletions, and substitutions / # 

transcribed words) and recognition accuracy (# correctly 

recognized words / # transcribed words). We observed high 

insertion error rate due to background noise and speech in the 

classroom. We have adjusted penalty for inserting silences and 

filler words to reduce WER. However it caused classification 

accuracy to drop too. We therefore kept high insertion and 

used confidence thresholding to compute the features. 

Table 3. ASR performance for the two tasks. 

 WER Recognition accuracy 

 Reading Vocab Reading Vocab 

On-task 26% 93% 86% 41% 

Off-task 92% 99% 22% 26% 

Overall 32% 96% 79% 33% 

7. Conclusions 

This paper introduces the problem of detecting off-task 

speech, which is closely related to but different from the 

previously studied problems of out-of-domain detection, 

addressee identification, and spontaneous speech detection. 

We studied off-task speech detection in two tutorial activities 

for children: oral reading and vocabulary tasks. To automate 

the annotation of transcribed oral reading as off- or on-task, 

we used a deviation length heuristic calculated by aligning 

transcripts against story sentences. To characterize the 

difference between on- and off-task speech, we used acoustic 

features to capture speaking style, and lexical features to 

capture content. To investigate the generality of acoustic and 

lexical features across tasks, we trained an SVM classifier on 

the task of oral reading and compared its performance on both 

oral reading and vocabulary tasks. To deal with naturally 

imbalanced training data, we used an existing data weighting 

method in the SVM trainer to boost the weight of the minority 

class. For off-task speech, both the acoustic and lexical 

features generalized well across the two tasks, yielding 

comparable detection rates of around 80%. Acoustic features 

generalized even to untrained types of off-task speech, namely 

null responses, humming, and singing. We attribute the higher 

false positive rate on vocabulary responses to the overlapping 

speaking style between its off- and on-task speech and the 

potentially wide choice of words in the task language. 

Future work includes applying off-task speech detection to 

other tasks, both within and beyond tutorial activities and 

children’s speech. We need better features and task language 

models to improve accuracy, but the ultimate evaluation of 

off-task speech detection is how it affects a dialog system. 
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