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Abstract. We describe a method to evaluate how student models affect ITS de-
cision quality – their raison d’être.  Given logs of randomized tutorial decisions 
and ensuing student performance, we train a classifier to predict tutor decision 
outcomes (success or failure) based on situation features, such as student and 
task.  We define a decision policy that selects whichever tutor action the trained 
classifier predicts in the current situation is likeliest to lead to a successful out-
come.  The ideal but costly way to evaluate such a policy is to implement it in 
the tutor and collect new data, which may require months of tutor use by hun-
dreds of students.  Instead, we use historical data to simulate a policy by extra-
polating its effects from the subset of randomized decisions that happened to 
follow the policy.  We then compare policies based on alternative student mod-
els by their simulated impact on the success rate of tutorial decisions.  We test 
the method on data logged by Project LISTEN’s Reading Tutor, which chooses 
randomly which type of help to give on a word.  We report the cross-validated 
accuracy of predictions based on four types of student models, and compare the 
resulting policies’ expected success and coverage.  The method provides a utili-
ty-relevant metric to compare student models expressed in different formalisms. 
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1 Introduction 

A challenge in the field of Intelligent Tutoring Systems (ITS) is to evaluate student 
models by their impact on the success of an ITS’s decisions – in particular, about 
which type of help to give students.  Individualized help can have a strong impact on 
learning [1].  The better the tutor adapts its help to the student and situation, the li-
kelier the student will learn from it. 

This paper shows how to use logged tutor data and a student model to learn what 
help to provide in a given situation, and how to compare alternative student models 
based on the resulting help policies. The paper is organized as follows. Section 2 re-
views prior work on learning help policies. Section 3 describes the student models we 
used in the study. Section 4 discusses the data. Section 5 presents the algorithm for 
learning a help policy. Section 6 reports results. Section 7 concludes. 
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2 Relation to Prior Work 

Several papers report positive results from learning individualized help policies.  
Andes [7] used a Bayesian network to adapt hints to the student, the problem, and 

the context, but required human-designed sequences of hint templates; we do not. 
ADVISOR [4] and later work [2, 6, 7] used reinforcement learning to adapt a pe-

dagogical agent to optimize student performance metrics such as the time to solve 
problems. The agent could give hints or to select the next exercise. ADVISOR used 
only one student model; in contrast, we compare alternative student models. Only Chi 
et al. [6] included features of system behavior, which they found affected feedback 
success more than task or student features.  Barnes and Stamper [2, 7] derived poli-
cies from effects of student decisions; in contrast, we learn from tutor decisions. 

Project LISTEN’s Reading Tutor [19] chose randomly among different types of 
help on a word. Heiner et al. [13] compared their success rates based on how often the 
student read a word acceptably at the next encounter. We use this and other informa-
tion plus a student model to train a policy, not just compare overall success rates. 

Razzaq and Heffernan [22] compared two types of feedback, namely scaffolds and 
hints, and found that students who got scaffolds learned more than students who got 
hints with pre and post tests, although the difference was not statistically significant. 
Like Heiner, they compared rates, but between groups rather than within-subject. 

Recommender systems can be used to recommend suitable learning resources to a 
given student in an ITS or web-based learning. Verbert et al. [26] predicted  the suc-
cess of recommendations (in terms of student satisfaction) from student activities.  In 
contrast, we predict the success of help (in terms of student performance) from stu-
dent traits, task features, help type, and a student model of estimated skills. 

Table 1. Summary of prior work on help or hint selection, in terms of features and evaluation 

Work Features used to select  
help or hints Methodology to validate learned policy 

Gertner et 
al. [11] 

Problem goal + current problem 
state + context + student’s mas-
tery of skills 

Experiments (pre and post tests) 

Beck et al. 
[4] 

Student model + current problem 
state 

Simulation (check if probability of success 
increases with the help) and experiments 

Heiner et 
al. [13] 

Student level + word difficulty 
Use historical data (expected increase in 
success for unseen students) 

Barnes, 
Stamper et 
al. [3, 23] 

Student model + current problem 
state 

Experiments (number of solved problems, 
errors, and number of hints given with the 
generated policy vs. default policy) 

Chi et al. 
[6] 

Student features + domain fea-
tures + system behavior features 

Experiments (pre and post test) 

This paper 
Student features + domain fea-
tures + system behavior features 

Use historical data (expected increase in 
success for unseen students) 

Table 1 summarizes all this work in terms of the features used in the help or hint 
policy, and how it was evaluated using on-line experiments or off-line simulation. 
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Prior research has explored various ways to compare student models [17]. Several 
papers [5, 12, 21, 27] compare different knowledge tracing models based on goodness 
of fit. That work frames student modeling as a prediction problem, where the goal is 
to predict the next observation of student performance (correct or incorrect). Other 
papers compared the accuracy of models based on constraint-based modeling [14] or 
Item Response Theory [9].  Results depend on the domain, the datasets, and the mod-
el-fitting method. For instance, Pavlik et al. found that Performance Factor Models 
(PFM) beat Bayesian Knowledge Tracing [21], but Gong et al. found the opposite, 
leaving uncertain the reason for this divergence in results [12]. Moreover, we know of 
no prior quantitative comparisons of different types of student models.  

3 Student Models 

We now describe the three types of student models we compare in this paper. 
Knowledge Tracing [8] is based on a cognitive model, which specifies the skills 

underlying students’ successive observable actions.  Knowledge tracing uses these 
observations to update estimated probabilities of the student knowing the skills, based 
on the knew probability of having a skill beforehand, the learn probability of acquir-
ing the skill at any given step, the guess probability of responding correctly without 
knowing a skill, and the slip probability of responding incorrectly despite knowing it.  
Knowledge Tracing uses a Bayesian update, while the Performance Factor Model 
(PFM) [21] uses a linear combination of skill difficulty, student proficiency, and past 
performance (number of previous successes and failures on a given skill). 

Constraint-based modeling [20] has no cognitive model of skills underlying steps. 
Instead, it represents domain constraints whose violation reveals missing knowledge 
or misconceptions that call for corrective feedback. A constraint-based model 
represents domain knowledge as a set of constraints (Cr, Cs), where Cr specifies the 
situations where the constraint is relevant, and Cs specifies the correct answer in those 
situations.  The constraint-based model can infer student knowledge from students’ 
observed actions as the probability of satisfying a constraint when it is relevant. 

Finally, the Control-based Approach [16] (based on cKc [2]) represents domain 
knowledge as a set of problems, operators for solving the problems, indicators of how 
a problem or operator is represented (e.g. as proof vs. diagram in geometry), and 
skills for deciding whether an answer or action is correct, represented as nodes in a 
Dynamic Bayesian Network.  The Control-based Approach uses observed student 
actions to update the conditional probability of knowing the skill given the problem, 
the representation indicators, the operator used, and whether the action is correct. 

4 Experimental Data 

We use data from Project LISTEN’s Reading Tutor [19], which displays text and 
listens to a child to read it aloud.  The Reading Tutor uses automatic speech recogni-
tion (ASR) to classify each text word as read correctly or not, and to measure the 
latency before reading each word. We label a word as fluent if the Reading Tutor 
recognized it as read correctly without help or hesitation.  The Reading Tutor can give 
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Table 2. Summary of the four types of student models used in this work 

Type of student model Update method Output (prediction) Ref 
Performance  Factor 
Model 

Linear regression Probability of answering correctly  [21] 

Bayesian Knowledge 
Tracing 

Hidden Markov 
Model 

Probability of answering correctly  [8] 

Constraint-based Constraints Probability of violating constraints [18] 
Control-based Dynamic Bayesian 

Network 
Probability of using skills or not, 
correctly or not 

[16] 

 

Constraint-based models are typically updated at the end of exercises.  To update them 
online instead, we associate a power law function with each constraint (knowledge), fit 
these functions to observed student performance so far, and use them to predict subse-
quent performance. Another difficulty in our data is that the skills are not directly observ-
able. Our model of oral reading represents a skill as mapping a grapheme to a phoneme. 
For instance, the word chemist maps ch→/K/, e→/EH/, m→/M/, i→/IH/, s→/S/, and 
t→/T/. However, our speech recognizer only recognizes words. Thus, we used a  
multiskill approach, meaning that a single observed step (reading a word) may require 
multiple skills . We estimate each skill independently, predict performance conjunc-
tively (i.e. multiply the estimates of all the skills used in a step), and update each skill 
separately as if assigning it sole responsibility for the step’s success or failure [27]. 

To fit models that maximize data likelihood, we use EM for Bayesian Knowledge 
Tracing and Control-based models, and R’s stats and igraph packages for Perfor-
mance Factors Models and Constraint-based models.  

5.2 Selecting Features 

Help type H on word W on day i succeeds if W is fluent at the first encounter on day j.  
To find which features best predict success, we use stepwise linear regression with 
success as response variable and features as predictors, and optimize AIC, defined as: 

 AIC = 2 × k – 2 × ln(L) 

Here k is the number of parameters of the model and L the data likelihood. A one-way 
ANOVA tests if the features significantly (p<0.01) explain success. The initial fea-
tures were all selected:  student’s reading level, student proficiency (% of words ac-
cepted as fluent when first seen each day), story’s difficulty level, word length, word 
frequency in English, word position in the story, the number of prior encounters of the 
word, and the word class, defined by which Reading Tutor interventions apply to it. 

5.3 Learning Classifiers to Predict Help Success 

To predict based on the student model, the selected features, and the type of help 
whether help will succeed, i.e. lead to reading the word fluently at the next encounter 
(cf. Figure 1), we trained three types of classifiers – two based on rules (Part [10] and 
JRip [7]) and one on random trees, using Weka1. Here is an example of a learned rule: 
                                                           
1 http://www.cs.waikato.ac.nz/ml/weka 
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1) Word = c145  
2) AND Story_Level = B  
3) AND Student_Model_Prediction > 0.6 
4) AND Help_Type = ”SayWord” 

 Fluent (22/22) 

Clause 1 specifies that the rule applies to words in the class “c145,” for which the 
feasible help types (described in [13]) are 1 (“Autophonics”), 4 (“Recue”), and 5 
(“RhymesWith”).  Clause 2 specifies that the story is at a grade 2 level.  Clause 3 
specifies that based on prior data, the student model estimates probability over 0.6 
that the student will read the word fluently.  Clause 4 specifies help type. We compute 
confidence in a rule as the frequency of success in the training instances to which the 
rule applies.  The rule here predicts with confidence 22/22 that “SayWord” help will 
succeed. We prune rules with confidence below 0.75 (Weka’s default). 

5.4 Using a Predictor of Help Success as a Decision Policy for What Help to Pick 

The decision policy based on the trained classifier works as follows:  Choose the type 
of help specified by whichever rule applies to the current situation and has the highest 
confidence according to the training data.  If there is more than one such rule, pick 
randomly among them.  An alternative is to train a separate model to predict success 
for each type of help, and pick a type with the maximum probability of success. 

6 Experimental Results 

We evaluated our method on Reading Tutor data (cf. section 4). To split the data into 
two sets, one to train a student model and one to train and test a success predictor, we 
first sorted the data alphabetically by student initials, and used the first 60% to train a 
student model. Then we used the remaining 40% to train and test success predictors 
using 10-fold cross-validation. That is, we partitioned the students into 10 disjoint 
folds, pooled 9 of them to train a predictor, and tested it on the remaining fold.  We 
repeated this procedure for each fold, and averaged the results.  To test how well a 
student model fit the data, we used it to predict each time the Reading Tutor gave help 
on a word whether the student read the word fluently at the next encounter of it. 

We measure model accuracy as percentage of correct predictions, which Table 3 
lists from highest to lowest. We score a probabilistic prediction as correct if it rates 
the true outcome of the next encounter as likelier than 50%. Varying this probability 
threshold trades off false positive and false negative errors along an ROC curve. The 
area under the ROC Curve (AUC) measures the probability that given a fluent and 
non-fluent instance, the model will correctly identify which is which.  AUC of 1 
means the model is perfect; AUC of 0.5 means the model is no better than chance. 

AIC (defined in section 5.2) measures the goodness of fit to training data based on 
data likelihood, penalized by the number of parameters k. Here k is the number of 
model parameters multiplied by the number of skills and the number of students. 



 Comparing Student Models in Different Formalisms 167 

 

Table 3. Predictive accuracy of each student model, and of help success prediction based on it 

Type of student 
model 

Predictiveness of student models Predictors of help success 
Accuracy AUC AIC Coverage Accuracy  

Bayesian  
Knowledge Tracing 

84% 
(± 2.6%) 

0.68 5.1 E+4 32% 
75% 

(± 4.1%) 
 

Control-based 
model 

83%  
(± 2.9%) 

0.67 7.2 E+4 34% 
73% 

(± 4.4%) 
Performance Factor 

model  
81% 

(± 3%) 
0.65 5.5 E+4 26% 

68% 
(± 4.4%) 

Constraint-based 
model 

80%  
(± 2.8%) 

0.65 5.6 E+4 25% 
65% 

(± 4.3%) 

Significance on McNemar’s test:  ** 0.01 < p < 0.05; *** p ≤ 0.01 

All 4 diagnostic techniques beat the majority class (76% fluent words in our data). 
These results are consistent with a  previous evaluation of Knowledge Tracing [27] on 
a different set of Reading Tutor data, which found accuracies ranging from 72% to 
87%, but below 35% on non-fluent instances – which might explain why AUC, which 
measures a model’s accuracy in distinguishing positive from negative instances [24], 
was 0.68 or worse in our data. AIC rated Bayesian Knowledge Tracing highest, pena-
lizing the control-based model because it has more parameters than the other models. 

Table 3 evaluates each success predictor by its cross-validated accuracy on help 
given to held-out students.  We show results only from JRip, because it beat the other 
two classifier methods (by less than 2%).  Bayesian Knowledge Tracing did best. 
Coverage is the proportion of words in the test set to which a rule of a policy applies.  

Predictors of help success were less accurate than the student models they used.  
Evidently, predicting whether a student will read a word fluently at the next encounter 
is easier than predicting whether help on that word will succeed.  A possible reason is 
data sparseness:  we predict success of each help type from the training instances 
where the Reading Tutor happened to give that type, which may be very few. 

To test the statistical reliability of accuracy differences between predictors of help 
success rate, we used McNemar’s test, which checks for significant differences be-
tween two classifiers C1 and C2 on the same data using this formula: 

 χ² = (d1 − d2)² / (d1 + d2) 

Here d1 is the number of instances classified as positive by C1 but negative by C2, 
and d2 is the number of instances classified as positive by C2 but negative by C1.  The 
sum d1 + d2 exceeds 80 in our data, well over the minimum of 10 specified by 
McNemar [15], so this test can be approximated as a Chi-squared distribution.  Each 
two consecutive predictors in Table 3 differ significantly (p<0.025), assuming neglig-
ible effects of statistical dependencies among trials with the same student or word. 

Finally, we computed the expected percentage of words read fluently at the next 
encounter after help based on each learned policy. The difference between expected 
and actual percentages represents the simulated increase in help success, shown in 
Table 4.  (Simulated means based on historical data rather than on new experiments.)  
The last row shows results when solely picking types of help with the highest success 
rate in the training set. We compute the expected help success rate E: 

 *** 

 *** 

  ** 
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| ݐ݊݁ݑ݈ܨሺܧ  ,כ݄ ܵ,  ሻܨ

Here S is the student model, F is the set of student and domain features, and h* is the 
type of help with the highest estimated probability of success in that situation:  

כ݄  ൌ argmax௛ ,݄ | ݐ݊݁ݑ݈ܨሺܧ ܵ,   ሻܨ

Table 4. Expected absolute percentage increase in (simulated) help success 

Diagnosis technique 
(type of student model) 

Expected increase in 
help success 

Coverage (% of test set 
covered by rules) 

Bayesian Knowledge Tracing 5.2% 32% 
Control-based model 5.1% 34% 

Performance Factor Model 4.7% 26% 
Constraint-based model 4.5% 25% 

Average success in the training set 2.4%  

7 Conclusion 

This paper presents new methods to compare student models and induce help policies. 
Prior work compared the predictive accuracy of student models expressed in the same 
formalism, e.g. cognitive modeling or Item Response Theory. In contrast, we compare 
the impact of student models on expected success of tutorial decisions based on them, 
a measure more directly relevant to utility than predictive accuracy is.  We believe 
quantitative comparison of student models across different formalisms is novel. 

We described a method to learn a policy for picking which type of help to give in a 
given situation, based on types of help, student features, domain features, and a stu-
dent model, by using this information to learn the probability that help will succeed, 
and then picking the type of help likeliest to succeed in a given situation.  Using data 
from Project LISTEN’s Reading Tutor, we showed that success predictors differ sig-
nificantly, depending on the student model used. All four learned policies improved 
the Reading Tutor’s expected success compared to its original randomized decisions. 
A 5.2% increase despite only 32% coverage implies 16.3% increase on the covered 
test instances; thus better-generalized policies could potentially triple help success. 

Our approach has several limitations.  It applies only to tutors that decide among 
multiple types of applicable help.  It assumes that the logged decisions were rando-
mized, and that their outcomes can be computed from the ensuing tutorial interac-
tions.  The learned policy’s coverage and accuracy in predicting whether a given type 
of help will succeed in a given situation are limited by the number of observations in 
the logged training data of the tutor giving that type of help in that situation.  Thus the 
method can only learn policies followed sufficiently often in the data to estimate their 
success.  The learned policy is therefore vulnerable to under-covering and over-
fitting.  The accuracy of the cross-validated estimate of the learned policy’s expected 
success is similarly limited by the number of observations of each situation-decision 
pair in the held-out test data.  Both the policy and the estimate of its success assume 
that the outcomes of the held-out logged instances are representative of future unseen 
cases.  This inductive leap is the price we pay for evaluating the policy based on its 
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simulated rather than actual success.  Future work includes trying more accurate stu-
dent models such as LR-DBN [26], more powerful classifiers such as Support Vector 
Machines (SVM) or Random Forests, analysis of how student model accuracy affects 
the accuracy of predicting the success of help, learning more general policies to in-
crease coverage and reduce overfitting, and experiments to test how accurately ex-
pected success predicts actual success in practice. 
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