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Abstract. Fractional permissions have recently received much attention
for sound static reasoning about programs that rely on aliasing, but they
are challenging to track automatically. This paper contributes an algo-
rithm for proving permission-based assertions in a decidable fragment of
linear logic. Unlike previous work, this inference approach supports poly-
morphism over fractions. The paper shows how permission inference can
be implemented in a data�ow analysis that is able to infer loop invariants
even when permissions are consumed in loops.

1 Introduction

Fractional permissions [8] have recently received much attention for sound static
reasoning about programs that rely on aliasing. They have been used for avoiding
data races with locks [22] as well as for verifying properties of multi-threaded
[2, 14] and single-threaded programs [7, 4], where fractional permissions are
typically embedded into a substructural logic. In particular, the authors have
proposed using permissions for sound modular reasoning about typestate-based
protocols in the presence of aliasing [4, 2]. However, fractional permissions are
challenging to reason about automatically. This is because in practice we would
like users to not have to explicitly annotate program expressions with concrete
fractions, which in turn makes fraction inference necessary.

This paper contributes an algorithm for proving predicates over fraction-
polymorphic permissions in a decidable fragment of linear logic [10] (Sect. 2),
which we believe carries over to other substructural logics. Unlike previous work,
this algorithm supports polymorphism over fractions: it is able to instantiate
quanti�ers when proving programmer-declared predicates such as method pre-
conditions. (Quanti�ers can also be inferred in loops, see below.)

The paper further shows that an intra-procedural data�ow analysis can au-
tomatically track permissions through imperative programs based on this algo-
rithm (Sect. 3) to ensure that valid fractional permissions are available when
aliased objects are accessed. In particular, our prototype implementation, Plu-
ral, only requires annotations on object �elds and method parameters to track
permissions in Java programs. Plural uses permissions for sound veri�cation of
correct usage and implementation of typestate [20] protocols. We have previously
described our experience with using Plural [6]; this paper is the �rst description
of its underlying permission inference algorithm and data�ow analysis. Permis-
sions are typically used to reason about access to shared objects in memory.



Fractional permissions as they were originally proposed enforce that objects are
either modi�ed through a single, unique reference, or alternatively read through
any number of immutable, read-only references [8].

Fractional permissions intuitively associate each program reference (x) with
a rational fraction (k) in the range (0, 1], written k · x. unique permissions by
de�nition carry a fraction of 1. immutable permissions are represented by frac-
tions less than 1 and indicate that more (immutable) permissions to the same
object exist, without saying exactly how many. Fractional permissions are useful,
like most systems for reasoning about aliasing, because they restrict and record
statically the patterns of aliasing used in a program, which can in turn allow us
to prove useful behavioral properties about a program with mutable state. Since
permissions are resources that cannot be duplicated, they are typically reasoned
about in the context of a substructural logic such as linear or separation logic.

Fractional permissions complicate the automatic derivation of proofs about
program behavior because permissions are divisible resources that can theoreti-
cally be split an arbitrary number of times to satisfy di�erent assertions. (Linear
and separation logic traditionally treat resources as indivisible.) They can also
be merged back together, which may be necessary to obtain a stronger permis-
sion. (Splitting means dividing the fraction associated with a permission among
two new permissions, while merging means to sum up the fractions from a set
of given permissions into one permission.)

There are at least two important goals in automatically deriving proofs about
realistic programs: comprehensiveness and modularity. Comprehensiveness calls
for an automated prover to work with most useful code; modularity means
checking parts of a larger program separately, which allows complex provers
to scale and to check code that employs or implements reusable libraries [4].
By supporting universally and existentially quanti�ed fractions in permissions�
i.e., fraction-polymorphic permissions�with our inference system we elegantly
achieve both of these goals.

Previously published fraction inference systems [22, 14] attempt to assign
concrete fractions, such as 3/4, to all references in the program, an approach
that, while intuitive, is neither modular nor comprehensive:

Modularity.Any module system requires type annotations at module bound-
aries [e.g., 16]. In previous approaches programmers write explicit fractions, like
3/4 ·x, at module boundaries. This seems to resolve the modularity issue, but it
reveals too much information: any change to a module that results in a di�erent
aliasing pattern is likely to a�ect �xed fractions in the interface, and chang-
ing the interface breaks compatibility with code that previously linked to the
module. On the other hand, polymorphic speci�cations are naturally robust to
many kinds of code changes, allowing methods to require some fraction and pro-
duce any fraction in return. In fact, in all our case studies [4, 2, 5, 6] we have
needed concrete fractions in only two examples [4, 5], suggesting that fraction-
polymorphic permissions are a much better ��t� for most programs.

Comprehensiveness. Loops sometimes reduce the available fraction for a
program reference in every iteration, and as a result no concrete fraction can be



assigned to such a reference. Terauchi [21, section 5] observes that his approach
cannot handle loops like the following, in which we assume that every new Worker

consumes a fractional permission to the queue object passed into its constructor:

Blocking_queue queue = new Blocking_queue();
for( int i=0; i<number; i++) {

(new Worker(queue)).start();
}

In contrast, our algorithm continues to work because the remaining permis-
sion for queue in the example above always carries some fraction. The data�ow
analysis presented in this paper handles loops based on this idea without any
developer intervention.

In summary, contributions of this paper include the following:

� A novel inference algorithm for proving pre- and post-conditions over poly-
morphic fractional permissions in a large, decidable fragment of linear logic
(Section 2).

� A data�ow analysis based on the algorithm which tracks permissions as they
�ow through code (Section 3).

Section 4 discusses related work before section 5 concludes.

2 Inference System

This section provides a deterministic algorithm for proving linear logic predi-
cates over fractional permissions in a core object-oriented language with explicit
predicates only required in method signatures. In a nutshell, the algorithm col-
lects linear arithmetic constraints over fractions needed to satisfy predicates
encountered during typechecking. These constraints can then be checked for sat-
is�ability. The appearance of certain linear logic connectives gives rise to more
interesting proof contexts outlined below.

Devising such an algorithm is non-trivial because proving linear logic predi-
cates based on fractional permissions is highly non-deterministic; in other words,
�nding a proof otherwise involves a lot of �guesswork:�

� Permissions can be split an arbitrary number of times and merged back to-
gether. Exactly how a given permission has to be split up and merged in order
to satisfy di�erent predicates has to be �guessed.� This non-determinism is
not an issue in conventional linear logic proof search where resources are
indivisible.

� Context splits, such as in the linear logic proof rule for⊗, �guess� how permis-
sions have to be divided in order to satisfy di�erent predicates. These non-
deterministic context splits also appear in certain expression typing rules,
for example in the let binding, in order to prove multiple subexpressions.

� Multiple proof rules can apply. For example, the rules for proving a disjunc-
tion P1 ⊕ P2 �guess� whether P1 or P2 can be proven.



� The order in which proof rules are applied matters, requiring �guessing�
whether a premise or the conclusion has to be broken down next. The stan-
dard technique of focusing [1] e�ciently and deterministically tries all pos-
sible orders of applying proof rules. Hence we do not further discuss this
problem here.

Linear logic proof rules are typically written ∆ ` P , treating the available
resources in ∆ as an input to prove a predicate P [10]. In linear logic, as with
other substructural logics, we can think of the resources in ∆ being consumed to
prove new resources P . Similarly, linear logic-based type systems typically use a
judgment like Γ | ∆ ` M : x.P to prove that term M produces resources P by
consuming ∆ under variable context Γ [4, 2]. P can mention variables in Γ as
well as x, which refers to the value that M evaluates to. In our context, P will
associate the permissions produced by M with x.

Such a typing judgment treats ∆ as an input and produces one output, the
predicate P that could be proven. For example, typing a let expression involves
guessing a context split between the two subexpressions, which may involve
splitting up fractional permissions:

Γ | ∆1 `M1 : x1.P Γ, x1 | ∆2, P `M2 : x2.P2 ∆ = ∆1, ∆2

Γ | ∆ ` let x = M1 in M2 : x2.P2

This sort of nondeterminism is reasonable to have in the typing rules for a
language, since they form a declarative description of the facts that must hold
for any well-typed program. But in order to actually check the well-typedness of
a program, we need to de�ne a series of deterministic type-checking rules.

First, in order to make context splits such as the one shown for let deter-
ministic, we take a page from linear logic proof search [9] and add an additional
output, ∆′, to these judgments. This additional output will return all of the
items from the incoming context that were not consumed by the proof.

Next, we must deal with situations where multiple proof rules for linear
logic are applicable. This is the case for proving an external choice (P1 ⊕ P2)
or an internal choice (P1 & P2). Typically a backtracking approach is used,
where a prover attempts to prove one predicate and, if that fails, tries to prove
the other predicate instead. That would be onerous when successively proving
pre-conditions for program instructions, where the last instruction may cause
backtracking to the �rst one. Instead of backtracking, we will therefore carry
the possible choices forward, pruning out choices as they become infeasible.

This leaves one �nal source of non-determinism: the splitting and merging
of fractional permissions. Inspired by constraint logic programming [13], we ex-
tend our proof search technique by associating constraint implications C0 → C
(abbreviated I) with our linear context ∆. The constraints C will record which
permissions were needed in earlier parts of the method body. C0 represents as-
sumptions we can make when solving C. These assumptions will be made when
eliminating quanti�ed fractions. We will refer to ∆|I as an atomic context.

The remainder of this section contains a detailed description of our permission
inference system.



2.1 Syntax

The syntax for the permission inference system is summarized in Figure 1. It is
based on Featherweight Java [11], but for simplicity we are not keeping track
of object types and instead assume that conventional typechecking has already
ensured type safety. Programs Λ are simply lists of methods (suitably renamed to
avoid name clashes) and class constructors with declared pre- and post-condition
predicates. Expressions M are standard; however, notice that we introduce a
let-binding construct to de�ne intermediate variables and only allow variables
as arguments to methods and object constructors. This simpli�es the theory
[15, 4].

Expression types E bind a variable representing the value computed by the
typed expression in the scope of a linear logic predicate P . Fractional permissions
k · x with fraction k for variable x represent the only kind of atomic linear
predicate. Fractions include unknown fractions z as well as logic variables Z

which can be freely instantiated. All variables are implicitly at least 0 and at
most 1; we will omit constraints to that e�ect for readability. Permissions can
have zero (0) fractions if they are never used for satisfying any predicates; �real�
permissions always need a fraction that is strictly greater than zero.

Proof contexts Ψ are built up from atomic contexts ∆ | I. Whenever we
can make a choice between two rules we introduce a choice context Ψ1 & Ψ2

that carries the two possibilities forward (to avoid backtracking). When one of
the choices fails to prove a predicate, we will simply drop it, and if no context
remains then our proof fails. Dually, we introduce all contexts Ψ1⊕Ψ2 to carry two
possibilities forward that both have to be able to prove subsequent predicates.
When one of the options of an all context fails to prove a predicate then the
entire context is dropped, failing the proof if no other choices are available.

2.2 Typechecking

Expressions are typechecked with the following judgment (Figure 2):

Γ | Ψ `M : x.P ⇒ Ψ ′

This judgment reads, �in context Ψ , expression M (with free variables de�ned
in Γ ) will produce a value x with predicate P as well as a new context Ψ ′ for
checking the remainder of the program�. For example, the typing rule for let

expressions presented at the beginning of section 2 now appears as T-Let in
�gure 2: Ψ is passed into the rule and used to prove the �rst subexpression. This
sub-proof may generate more constraints and returns any unused permissions,
both of which are in Ψ ′. Ψ ′ is in turn used to prove the second subexpression,
producing Ψ ′′ which is returned to the next part of the program.

The remaining typing rules prove method and constructor pre-conditions
with the linear logic proof judgement presented in the next section. Field access
requires a permission for the accessed object, which poses no additional problems
for fraction inference and is hence omitted in this paper [details in 3].



Programs Λ ::= •
| Λ,m(x1, . . . , xn) : P ( E = M method
| Λ, c(x1, . . . , xn) : P ( x.1 · x constructor

Expressions M ::= x0.m(x1, . . . xn) call
| new c(x1, . . . , xn) construction
| let x = M1 in M2 sequence

Expr. types E ::= x.P
Predicates P ::= k · x atom

| P1 ⊗ P2 separate conjunction
| P1 & P2 internal choice
| P1 ⊕ P2 external choice
| ∀z.P | ∃z.P quanti�cation

Fractions k ::= z unknown fraction
| Z fraction variable
| 1 | 0 | . . . constants

Var. contexts Γ ::= • | Γ, x
Proof contexts Ψ ::= ∆ | I atom

| Ψ1 & Ψ2 choice
| Ψ1 ⊕ Ψ2 all

Implication I ::= C0 → C
Permission set ∆ ::= • | ∆,P

Constraints C ::= > | ⊥ true, false
| F | C1 ∧ C2 formula, conjunction

Formulae F ::= k
.
= k1 + k2 | 0 < k see Sect. 2.3

Program vars. x, y ::= this | . . .
Fraction vars. z
Class names c ::= Object | . . .
Node names n ::= alive | . . .

Method names m

Fig. 1. Syntax for permission inference system



T-Call

mtype(m) = ∀x0, x1, . . . , xn.P ( E Ψ ` P ⇒ Ψ ′

Γ | Ψ ` x0.m(x1, . . . , xn) : E ⇒ Ψ ′

T-New

init(c) = ∀x1, . . . , xn.P ( E Ψ ` P ⇒ Ψ ′

Γ | Ψ ` new c(x1, . . . , xn) : E ⇒ Ψ ′

T-Let

Γ | Ψ `M1 : x.P ⇒ Ψ ′ Γ, x | Ψ ′, P `M2 : E ⇒ Ψ ′′

Γ | Ψ ` let x = M1 in M2 : E ⇒ Ψ ′′

m(x1, . . . , xn) : P ( E = M ∈ Λ
mtype(m) = ∀this, x1, . . . , xn.P ( E

c(x1, . . . , xn) : P ( E ∈ Λ
init(c) = ∀x1, . . . , xn.P ( E

Fig. 2. Typechecking rules and helper judgments for permission inference

2.3 Proof Rules

The judgment for proving a predicate P from a given context Ψ is the following:

Ψ ` P ⇒ Ψ ′

This judgment will be presented in several steps. We �rst discuss the rules
for deriving constraints from splitting and merging individual permissions. Then,
rules for proving predicates from atomic contexts ∆ | I are presented. Finally,
we show how complex contexts Ψ are broken down into such atomic contexts.

Atom Rules. We need three rules for dealing with atomic permissions, one for
splitting, one for merging, and one for trivial failure (Figure 3). The basic idea
behind them is to delay splits until they are needed for proving a permission,
while eagly merging permissions to the same variable.

Constraint formulae have two forms (Figure 1): they can equate a fraction
sum with another fraction or they can de�ne a fraction to be strictly greater
than 0. The former is used to relate fractions from di�erent permissions. The
latter type of formula will force fractions to be �real� wherever they are used,
as explained above. Let us see how these constraints are generated by the atom
rules in Figure 3.

Split proves a permission for some variable x if there is a permission for
that variable in the context. In this case we can add a �fresh� permission (a
permission with a fresh fraction Z′′) for the variable into the output context,
which represents the �leftover� permission after splitting o� the needed from
the existing permission. We introduce constraints that force the fractions in the
needed and leftover permissions to sum up to the fraction of the given permission.
We also introduce constraints for enforcing the given and proven permissions to
be �real�. Notice that the leftover permission is not required to be �real�.



Split

C′ = k
.
= k′ + Z

′′ ∧ 0 < k ∧ 0 < k′
Z

′′ fresh

∆, k · x | C0 → C ` k′ · x⇒ ∆,Z′′ · x | C0 → (C ∧ C′)

Merge

∆,Z′′ · x | C0 → (C ∧ Z′′ .= k + k′) ` P ⇒ Ψ Z
′′ fresh

∆, k · x, k′ · x | C0 → C ` P ⇒ Ψ

Fail

no permission for x in ∆

∆ | C0 → C ` k · x⇒ ∆ | C0 → (C ∧ ⊥)

⊗ L

∆,P1, P2 | I ` P ⇒ Ψ

∆,P1 ⊗ P2 | I ` P ⇒ Ψ

⊗ R

∆ | I ` P1 ⇒ Ψ1 Ψ1 ` P2 ⇒ Ψ2

∆ | I ` P1 ⊗ P2 ⇒ Ψ2

⊕ L

∆,P1 | I ` P ⇒ Ψ1 ∆,P2 | I ` P ⇒ Ψ2

∆,P1 ⊕ P2 | I ` P ⇒ Ψ1 ⊕ Ψ2

⊕ R

∆ | I ` P1 ⇒ Ψ1 ∆ | I ` P2 ⇒ Ψ2

∆ | I ` P1 ⊕ P2 ⇒ Ψ1 & Ψ2

& L

∆,P1 | I ` P ⇒ Ψ1 ∆,P1 | I ` P ⇒ Ψ2

∆,P1 & P2 | I ` P ⇒ Ψ1 & Ψ2

& R

∆ | I ` P1 ⇒ Ψ1 ∆ | I ` P2 ⇒ Ψ2

∆ | I ` P1 & P2 ⇒ Ψ1 ⊕ Ψ2

∀ L
Z fresh

∆, [Z/z]P ′ | C0 → (C ∧ Z > 0) ` P ⇒ Ψ ′

∆,∀z.P ′ | C0 → C ` P ⇒ Ψ ′

∀ R
∆ | (C0 ∧ z > 0)→ C ` P ⇒ Ψ ′

∆ | C0 → C ` ∀z.P ⇒ Ψ ′

∃ L
∆,P ′ | (C0 ∧ z > 0)→ C ` P ⇒ Ψ ′

∆, ∃z.P ′ | C0 → C ` P ⇒ Ψ ′

∃ R
Z fresh

∆ | C0 → (C ∧ Z > 0) ` [Z/z]P ⇒ Ψ ′

∆ | C0 → C ` ∃z.P ⇒ Ψ ′

Fig. 3. Proof rules for linear logic formulae



Merge is used to eagerly merge permissions for the same variable. This
ensures that we always have the strongest possible permission available to prove
the next one. Two permissions for the same variable occur when permissions are
injected into the context from the post-condition of an invoked method.

Fail makes trivial failure x explicit: the rule inserts �false� (⊥) into the
constraints if no permission for a variable x is available whatsoever. Another
way of thinking about this rule is that any variable not explicitly mentioned in
∆ implicitly has a zero (0 · x) fraction associated with it. Proving a permission
for such a variable with Split would then result in the unsatis�able constraint
0 < 0.

Proving Predicates. Figure 3 also summarizes the judgments for proving linear
logic formulae. They are described below:

Linear Connectives. The rules for proving linear logic connectives (⊗,&,⊕)
are a straightforward adaptation of resource management for linear logic. In
particular, constraints are simply threaded through the proof in the obvious
way. Notice that we use our �choice� and �all� contexts for handling connectives
other than ⊗ to avoid backtracking (see section 2.1).

Quanti�ers. The quanti�er rules (∀, ∃) allow us to support polymorphic frac-
tions using logic variables and �unknowns�. When quanti�ed fractions are intro-
duced (∀R and ∃L) we simply strip the quanti�er, turning the quanti�ed variable
into a parameter (which we will call an �unknown�) that can be thought of as
a constant with unknown value. Of course, the quanti�ed variable needs to be
suitably alpha-converted to not capture existing parameters. We ensure that
quanti�ers contain �real� fractions by adding suitable constraints where quanti-
�ers are introduced. When quanti�ers are used (∀L and ∃R) we introduce logic
variables to �nd a suitable instantiation.

To our knowledge, the handling of quanti�ers is novel compared to previous
work on fraction inference. Quanti�ers motivate the introduction of assumptions
C0 in constraint formulae C0 → C, which in previous work were not present.
Resolving these constraints is discussed in Section 2.4.

Discussion. We have not included rules for solving linear implication (().
In practice we have found that full support for linear implication was made
unnecessary by specialized support for dynamic state tests [6]. Full support for
implication would require the standard use of focusing [1].

Notice that the & and ⊕ rules as well as the ∀ and ∃ rules are dual to each
other, as they should be.

Ctx-&
Ψ1 ` P ⇒ Ψ ′

1

Ψ2 ` P ⇒ Ψ ′
2

Ψ1 & Ψ2 ` P ⇒ Ψ ′
1 & Ψ ′

2

Ctx-⊕
Ψ1 ` P ⇒ Ψ ′

1

Ψ2 ` P ⇒ Ψ ′
2

Ψ1 ⊕ Ψ2 ` P ⇒ Ψ ′
1 ⊕ Ψ ′

2

Fig. 4. Context proof rules



Context Rules. The rules for breaking down �choice� and �all� contexts in order
to apply the rules in Figure 3 are shown in Figure 4. The rules stipulate that
predicates are proven separately for compound contexts and put back together
into a new compound context afterwards.

2.4 Solving Constraints

The collection of constraints during typechecking allows us to e�ectively accu-
mulate information about all the permissions needed in a piece of code. But a
program should only typecheck if constraints are satis�able.

Checking Method De�nitions. We could check satis�ability, written C0 → C,
after typechecking every program expression. But there is no point in doing so
since constraint satis�ability for the surrounding expression implies that the con-
straints for its sub-expressions are satis�ed (because constraints are conjunctions
that only ever grow in length). Therefore, we can delay constraint resolution to
outermost expressions, which in our case are method bodies. The relevant rule
for ensuring that a method body is well-de�ned is as shown in Figure 5. The
rules require constraint satis�ability for atomic contexts and let us choose a com-
ponent context in �choice� contexts, while both components must be satis�able
in �all� contexts. In practice, we balance delaying constraint solving with identi-
fying and pruning unsatis�able contexts early. In particular, it is easy to prune
trivially unsatis�able constraints (those containing ⊥) eagerly.

Constraint Satis�ability. Constraints contain �unknown� variables, written z,
and logic variables Z. The quanti�er proof rules (∀, ∃) of Figure 3 introduce
both kinds of variables, while the atomic predicate rules only introduce logic
variables. Logic variables can be instantiated arbitrarily to satisfy constraints.
Unknown variables, on the other hand, are assumed to have an unspeci�ed but
particular value. Hence, in a given constraint implication C0 → C, unknowns
can be thought of as universally quanti�ed variables, while logic variables are
existentially quanti�ed. Our typing rules keep these quanti�cations implicit for

T-Meth

this, x1, . . . , xn | (P | > → >) `M : E ⇒ Ψ |= Ψ

m(x1, . . . , xn) : P ( E = M ∈ Λ

Sat-Atom

C0 → C

|= ∆ | C0 → C

Sat-&-L
|= Ψ1

|= Ψ1 & Ψ2

Sat-&-R
|= Ψ2

|= Ψ1 & Ψ2

Sat-⊕
|= Ψ1 |= Ψ2

|= Ψ1 ⊕ Ψ2

Fig. 5. Well-de�ned methods



notational convenience. If we make these quanti�cations explicit then determin-
ing constraint satis�ability C0 → C is equivalent to deciding the following logical
formula:

∀z1, . . . , zn.(C0 =⇒ (∃Z1, . . . ,Zm.C)) (1)

The assumptions C0 about unknowns introduced by ∃L and ∀R are always of
the form 0 < z, guaranteeing that quanti�ed permissions are �real�, while C is an
arbitrary constraint formula (see the constraint syntax in Figure 1). Notice that
unknown and logic variables are always treated the same way in (1), regardless
of whether they result from universally or existentially quanti�ed predicates.

Constraints of this form (that are not trivially true or false) can be checked for
satis�ability using Fourier-Motzkin elimination.1 In a nutshell, Fourier-Motzkin
can be used to eliminate a given variable from a conjunction of linear constraints
by re-writing the input formula into an equivalent formula that does not include
the eliminated variable [19]. The input formula is satis�able if and only if the
new formula is. We can successively eliminate all variables from our constraints
using Fourier-Motzkin, which will result in a �nal constraint formula that is
equivalent to the input formula and contains only rational constants but no
variables. This �nal formula is decidable because equality and inequality between
rational constants (such as 0 < 1 or 1 = 1) is decidable.

In order to deal with the alternating quanti�cation in (1) we use Fourier-
Motzkin to �rst eliminate the existentially quanti�ed variables, then rewrite
the outer universal quanti�er into an existential quanti�er (which introduces
negations), and �nally use Fourier-Motzkin to eliminate the remaining and now
existentially quanti�ed variables. (The last step could be accomplished with
linear programming as well.)

Thus, Fourier-Motzkin elimination can be used to check our fraction con-
straint formulae (1) for satis�ability. Nipkow [18] discusses other algorithms for
eliminating linear quanti�ers which are applicable to our constraint formulae as
well. We leave the evaluation of these algorithms to future work.2

Example. As an example, we can verify the producer-consumer from the intro-
duction as shown in Figure 6. We assume that the queue's constructor returns
a unique permission (1 · queue) and the worker thread's constructor takes and
does not return some fractional (∃z.z · queue) permission to the queue, which
will allow each worker thread and the producer to access the queue. Inside the
loop and before the constructor call, we have an unknown fraction z to the
queue (which the �ow analysis described in the next section generates). After
the constructor, we have a fresh variable fraction Z to the queue and additional
constraints relating the previous value of the fraction with the current value and
the fraction Z ′ passed into the constructor. These variables and constraints come
from proving the thread constructor's pre-condition.

1 Linear programming [19] cannot decide alternatingly quanti�ed formulae.
2 In practice, our tool's performance ranges around 60ms per method, which includes
conventional typechecking, constraint collection, and constraint resolution[3].



Our prototype implementation uses Java annotations to declare method sig-
natures. For instance, the shown @ResultShare annotation promises to return
a share permission (with some fraction). share permissions are tracked exactly
like immutable ones but permit modi�cations of the referenced object [4], and
we assume that each Worker also captures such a permission. Therefore, the
constraints generated for the return value are similar to those shown in the loop
body.

3 Flow Analysis for Local Permission Inference

Our prototype tool, Plural3, is a typestate checker for Java programs. It depends
on permission information and implements the inference algorithm presented
in the preceding section. Plural is a modular, intra-procedural analysis that
uses annotations to declare permissions consumed and returned by methods
(see Figure 6).

Plural tracks the permissions available for each object at each program point.
Like any data�ow analysis, this information is structured as a lattice. In section
2 we discussed how permissions can be inferred automatically using constraints,
and how composite contexts allow reasoning about linear logic ⊕ and & con-
nectives. Plural tracks constraints as part of its �ow analysis information and
includes support for composite contexts, which will be discussed below. Plural's
transfer functions essentially implement the permission inference rules described
in section 2.

3.1 Tuple Lattice

At the heart of Plural's analysis is a tuple lattice for tracking permissions and
constraints for individual objects. A tuple lattice in general tracks separate anal-

3 http://code.google.com/p/pluralism/

@ResultShare public static Blocking_queue createConsumers(int number) {
Blocking_queue queue = new Blocking_queue();
// 1 ∗ queue | 0 < z −−> true
for (int i = 0; i < number; i++) {
// z ∗ queue | 0 < z −−> true
(new Worker(queue)).start();
// Z ∗ queue | 0 < z −−> z = Z + Z' ^ 0 < Z ^ 0 < Z'

}
// z ∗ queue | 0 < z −−> true
return queue;
// Z1 ∗ queue | 0 < z −−> z = Z1 + Z1' ^ 0 < Z1 ^ 0 < Z1'

}

Fig. 6. Constraints generated for a producer-consumer example



ysis information for each object and is compared and joined pointwise. The in-
formation tracked for each object is a pair: the permission currently available
for the object together with the constraints collected for these permissions.

Such a tuple conceptually corresponds to an atomic context as discussed in
section 2. However, it is a simpli�cation because atomic contexts can in general
contain linear logic formulae, whereas Plural tuples contain atomic permissions
only. This has no consequences on precision in the case of multiplicative con-
junctions P1 ⊗ P2, where permissions P1 and P2 can be separately merged into
the tuple. There is a loss of precision when inserting ⊕ and & formulae, as
described below. However, we never used such formulae in our case studies, so
this issue has had no consequences in practice to date.

3.2 Comparing and Joining Permission Tuples

Tuples are compared and joined pointwise. Permissions for the same object are
compared using their fractions as follows:

1. pairwise equal fractions are equal.
2. logic variable (Z) or literal fractions (such as 1) are more precise than un-

known fractions (z) from existential quanti�ers. That is, knowing a particular
fractional value, or knowing that we can set the value to whatever we want,
is a stronger assumption than assuming that a value is unknown.

3. all other fractions are incomparable.

A pair of incomparable permissions is approximated by generating a new
permission with fresh unknown fraction, z′ (and in contrast to the fresh variable
fractions, Z' introduced by the permission inference). These unknown fractions
conservatively approximate variable and literal fractions, as mentioned above.

As shown in Figure 6, introducing unknown fractions to join incomparable
permissions allows permissions to be consumed in loops, which was not previ-
ously possible [see 21].

Tuple lattice has �nite height. As with any data�ow analysis, the question arises
whether ours is guaranteed to terminate, which, because of the iterative nature
of the algorithm, reduces to showing that the lattice in use has �nite height. We
informally argue that this is the case.

� Tuple lattices have �nite height (for a �nite set of objects) if the information
tracked for an individual object forms a lattice of �nite height. In our case,
this information is the permission tracked for an object.

� When joining individual permissions we either (a) preserve the fractions
present in these permissions (if they are equal) or (b) approximate them
with an unknown variable. Already approximated fractions will not be ap-
proximated again because the unknowns that were introduced are less precise
than any other fraction (including other unknowns), terminating the process
of approximation of individual permissions after one iteration.

Typically, our analysis terminates after three or less iterations of analyzing
a loop body.



3.3 Composing Tuples

Plural's tuple lattice supports composite tuples corresponding to the composite
choice and all contexts from section 2. Formally, we de�ne the elements A of
this lattice as follows:

A,B,C ::= T atomic tuple
| A & B choice element
| A⊕B all element
| > top
| ⊥ bottom

Comparing the elements of this lattice is straightforward, given the compar-
ison T1 v T2 for individual tuples we described in section 3.2.

A v C
A & B v C

B v C
A & B v C

A v B A v C
A v B & C

A v C B v C
A⊕B v C

A v B
A v B ⊕ C

A v C
A v B ⊕ C A v > ⊥ v A

This lattice allows reasoning about linear logic predicates that include in-
ternal (&) and external choice (⊕) operators, but it has in�nite height. It can
for instance be �nitized by joining external choices where they appear [3]. The
resulting lattice over only &-elements is �nite because lattice elements can only
contain a �nite number of incomparable tuples. As mentioned, we never used
internal or external choices in our case studies [6], so the precision impact of this
approximation is unknown.

4 Related Work

Fractional permissions were proposed by Boyland for avoiding data races in
concurrent programs [8] and have since been used in a variety of contexts.

We previously proposed type systems for sound and modular checking of
typestate-based protocols that extend Boyland's permissions to allow a great
deal of �exibility in how objects can be aliased [4, 2]. In particular, we introduced
new kinds of permissions, the notion of state guarantees, and used linear logic
to build predicates from individual permissions.

This paper contributes a permission inference system for a fragment of lin-
ear logic predicates that is polymorphic with respect to fractions and describes
the data�ow analysis used in our protocol checking tool, Plural. We previously
mentioned Plural [2, 6]; this paper gives the �rst detailed account of its data�ow
analysis and underlying inference theory.

Terauchi and Aiken [22] previously proposed a whole-program fraction infer-
ence system for checking data races in concurrent programs whose implementa-
tion is based on a linear programming engine [21]. In their work, control �ow



merges introduce new fraction variables that are forced to be at most as large
as the incoming fractions. Function signatures are also inferred with fraction
variables. Constraints are hence collected by scanning the entire program once,
even in the presence of conditionals and loops, allowing constraint collection to
be asymptotically linear in the size of the program.

Conversely, we collect constraints with an intra-procedural data�ow analy-
sis, which is polynomial in the method size in the worst case [17, chapter 6]
and requires annotations for permissions passed into and out of methods. An
advantage of this approach is that permissions can be consumed in loops, which
is not possible in Terauchi [21, see section 5]. Figure 6 shows such an example.
We are also able to use universal quanti�cation in function signatures, which is
more modular than inferring concrete fractions for signatures [14]. These di�er-
ences are due to our support for polymorphic fractions, which are not available
in previous work.

Leino and Müller [14] encode Boyland's fractions using integers representing
percentages between 0 and 100 as well as �in�nitesimal� fractions in �rst-order
logic. Loop invariants have to be provided by hand, while our implementation
infers loop invariants. Unlike with polymorphic fractions, it appears that the
(duplicable) in�nitesimal fractions cannot be used to borrow or otherwise tem-
porarily alias objects. Consequently, this unusual encoding will require devel-
opers to consistently use concrete percentage values in most of their method
pre-conditions and loop invariants.

Bornat et al. [7] combined Boyland's fractional permissions with separation
logic, but their approach is intended for hand-written proofs about program cor-
rectness. Boyland's ongoing work on avoiding data races unfortunately elides the
details of their fraction inference implementation [23]. VeriFast is an automated
proof checker for separation logic that to our knowledge supports Boyland's frac-
tional permissions [12], but the details of the implementation are again unknown.
VeriFast seems to require signi�cant developer input.

5 Conclusions

Fractional permissions are a very promising mechanism for reasoning about pro-
grams with aliasing. This paper contributes a permission inference algorithm
for fraction-polymorphic permissions that forms the basis of a comprehensive
and modular data�ow analysis for tracking permissions in imperative programs.
Our prototype implementation, Plural, uses this analysis for sound automated
reasoning about typestate-based protocols, but the analysis is generic and we
therefore hope that it will allow others to automate their applications of frac-
tional permissions as well.
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