
0 7 4 0 - 7 4 5 9 / 9 9 / $ 1 0 . 0 0  ©  1 9 9 9  I E E E S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 6 3

Software engineering researchers have long argued that the architec-
ture of a system plays a pivotal role in coordinating development work.
Over 30 years ago, Melvin Conway proposed what has since become
known as Conway’s Law—that the structure of the system mirrors the

structure of the organization that designed it.1 This relation, Conway argued, is a
necessary consequence of the communication needs of the people doing the work.
David Parnas, in fact, defined a software module as “a responsibility assignment
rather than a subprogram,”2 driving home the idea that modular design enables
decisions about the internals of each module to be made independently. Of course,
the computer that runs the software doesn’t care. The point of structure is to sup-
port coordination of the development work.

Architecture, however, addresses only one of the several dimensions on which
we must coordinate development. To support efficient use of resources, projects re-
quire plans that specify when milestones must be completed and who will do the 

Architectures,
Coordination, and
Distance: Conway’s
Law and Beyond

G eographica l ly  d i s t r ibuted  deve lopment  teams face  ex t raord inar y
communicat ion  and coord inat ion  problems. The  authors’ case  s tudy
c learly  demonst rates  how common but  unant ic ipated  events  can
st retch  pro jec t  communicat ion  to  the  break ing  p o int. Pro jec t
schedules  can  fa l l  apar t, par t i cu larly  dur ing  integrat ion . Mo dular
des ign  i s  necessar y, but  not  su f f i c ient  to  avo id  th i s  fa te.

James D. Herbsleb and Rebecca E. Grinter, BELL LABORATORIES

S



work. Moreover, to work together effectively, peo-
ple must agree on how the product will be devel-
oped—that is, the project’s process. Ideally, archi-
tectures, plans, and processes—coordination
mechanisms—would be sufficient to establish ef-
fective coordination among teams.

In the real world, this ideal is seldom fully attained
because unpredicted events occur that must be ac-
commodated. Estimates are inaccurrate, process
steps are executed imperfectly, requirements and
technologies change, and people leave. The wise

organization will anticipate this, making provisions
for modifying designs, plans, and processes. But em-
pirical studies suggest that developers also heavily
rely on informal, ad hoc communication3–6 to fill in
the details, handle exceptions, correct mistakes and
bad predictions, and manage the ripple effects of
all these changes.

In an organization where everyone is in a single
location, this sort of informal communication is
taken for granted and often goes almost unnoticed.
People are frequently surprised that casual conver-
sation at lunch, next to the coffee machine, or in a
coworker’s office is a critical means of coordination,
because it operates “invisibly.”

EMPIRICAL METHODS

For our case study, we chose a Lucent Tech-
nologies department that develops real-time em-
bedded systems for a rapidly growing market with
extreme time-to-market pressures. The department
engages in a number of cross-site collaborations
within their own product group, with other corpo-
rate divisions, and with other companies. We fo-
cused on a new product release and collected data
concerning the two locations (the UK and Germany)
that did most of the software development work. In
addition, both these sites had interactions with
other departments, often in the US, to ensure the
product successfully interacted with other systems.
The different languages, cultures, and time zones
complicated these collaborations.

We chose to study a geographically distributed
project partly to improve our chances of observing
coordination problems as they arose and partly to

see if and how geographic separation places stress
on informal communications; geographic separa-
tion is a pressing practical problem in its own right.
Many companies are driven to distribute develop-
ment resources around the globe for marketing pur-
poses and because of acquisitions, cost considera-
tions, and the availability of needed expertise.
Geographic distribution challenges coordination
mechanisms and informal communication by re-
quiring that they be robust across distances.7

We interviewed 10 managers and technical leads
who identified product inte-
gration (the work necessary to
assemble the product from its
components) as the activity
that suffered the most from ge-

ographic distribution. We then conducted eight
more interviews to focus specifically on integration.
We transcribed and analyzed the interviews for spe-
cific events and then looked for causes and out-
comes as we built a rigorous explanation of what
happened during integration. We used several types
of documentation to support and extend our analy-
sis. We were also given access to a thorough retro-
spective the department conducted of their first
product release, and we made extensive use of the
report and the qualitative data it was based on.

In the results that follow, we strive to show the
kinds of unpredicted events that caused this pro-
ject’s coordination problems. Because  we studied
the first release of a new product created by a new
organization, it probably had more than its share of
surprises. Nevertheless, we think they illustrate the
kinds of unanticipated events that arise in any soft-
ware engineering project.

ARCHITECTURE-BASED COORDINATION

The project generated the system architecture
with Orbix—a commercial, Corba-based object-ori-
ented application development product. This tool
specified interfaces with event tracing, or fence dia-
grams, that showed message sequences among
processes. The team expected the application de-
velopment tool to support code generation, but the
domain proved too complex for the system to
model. Thus, they decided to develop the code
manually based on the design agreements. From
this point on, the design documentation competed
with coding work for the developers’attention.

Following the design agreements, project teams

6 4 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Empirical studies suggest that developers rely
heavily on informal ad hoc communications.



developed each component at a single site, in rela-
tive isolation from teams at the other sites. Each
team built its own simulators to represent other
components that their code would need to interact
with. It turned out, however, that the interface spec-
ifications lacked essential details, such as message
type, return types, and assumptions about perfor-
mance. In many cases, developers proceeded un-
knowingly with incorrect assumptions about other
components. Because development groups had
written simulators to represent others’code, the dis-
crepancies remained hidden during unit testing and
were not exposed until integration.

There were times, of course, when a developer
working on a particular component did recognize
potential conflicts. In such cases, he or she gener-
ally tried to identify the people responsible for com-
ponents that used the interface and then tried to
work out specification refinements. These refine-
ments were infrequently recorded in the documen-
tation because that took time away from develop-
ment. This caused difficulties on a number of
occasions, particularly when the original developer
left and a new person, unaware of the refinement,
took over. It was also problematic during testing,
when tests that violated these agreements gener-
ated bug reports. For example, one developer re-
ported that there was an agreement that, for per-
formance reasons, another
component would verify all data
it sent to his component. The
testers, unaware of this agree-
ment and working at a different
site, submitted a series of bug reports based on tests
that sent the component bad data. The issue proved
difficult to resolve.

The developers also had to manage interfaces
between the product and its substrate technolo-
gies. Important differences existed in assumptions
about what the product wanted and what the sub-
strate could provide. These differences surfaced dur-
ing integration and took a long time to resolve be-
cause it was hard to find the right people to contact.
The problems were often solved only by hosting a
substrate developer on site.

PLAN-BASED COORDINATION

The project initially had a 40-step integration
plan, which was not closely followed because it de-
pended on the overall development plan and as-

sumed that the substrate environments would be
easy to assemble.

The integration plan relied on having compo-
nents available for integration at certain times,
which came from development plan dates. However,
the project suffered from many of the usual diffi-
culties and delays, such as changing requirements,
staff turnover, and extreme schedule pressure.
Compounding this was the virtual impossibility of
predicting how long it would take a new organiza-
tion to build a new product. In retrospect, it was not
surprising that the components were not ready for
integration on the schedule described in the plan.

As the developers strove to adjust to the project
realities, they (as one developer described)
“chopped and changed as things became ready.”
Developers reported that the plan changed weekly.
As the project progressed, they augmented the doc-
umentation to help them deal with the unpre-
dictability, keeping detailed records, for example, of
exactly what steps they took and what files went
into each build so that they could quickly back them
out if something went wrong.

Some developers concluded, in retrospect, that
the plan missed a critical, initial step: building the
product’s substrate environment. The integration
plan did not adequately account for the difficulty of
assembling the substrate for testing with the prod-

uct in two ways. First, the substrate was itself tech-
nically complex and took time to learn. Second, as-
sembling the substrate required interacting with a
new, remote site located in the US. Both problems
slowed down testing and compromised the inte-
gration effort because, until the developers famil-
iarized themselves with the substrate, they could
not align their code with it.

PROCESS-BASED COORDINATION

The developers also used a number of processes
to help organize and structure the development en-
vironment. These processes evolved with the pro-
ject, but it was not until integration that they dis-
covered a number of weaknesses.

In the beginning, each development site had its
own change-management process. Early on, this iso-

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 6 5

Architecture, plans, and processes are all vital
coordination mechanisms in software projects.



lation supported rapid development by allowing
developers to get their changes into the local builds
quickly. When it came time to finally integrate both
sites’ work, however, the separate processes were
cumbersome. For example, changes were some-
times found and logged into the change-manage-
ment system at both sites, and fixed twice, usually
leading to new bugs. This was eliminated only with
an awkward manual system for logging changes at
both sites simultaneously. In addition, the build
processes at the two sites diverged over time, so a
build that worked at one site wouldn’t compile at
the other. The extent of these complications cer-
tainly was not foreseen when the parallel databases
were set up.

The obvious solution to this problem was to con-
solidate the process at one site. This solution, how-
ever, led in turn to a series of new challenges.
Especially difficult was getting timely feedback
about the build results from the other site. When
developers from the remote site came to the inte-
gration site to get feedback, however, they lost the
ability to work in their own development environ-
ment. So, the remote developers faced a choice—
go to the central site and find problems or stay re-
mote and fix them—which significantly slowed the
development effort.

The project used a change-control board ap-
proach for examining each change request and de-
ciding whether, how, when, and by whom it should
be fixed. Initially, the CCB was located almost exclu-
sively at one site, which made sense because that
site had existing software being adapted for the
new product. The other location was starting from

scratch and had no project-level changes for the CCB
to review. Over time, as the second site began to
build their software and the product evolved from a
one-site legacy system to a multiple-site revision,
the CCB’s one-site focus became problematic. The
new code developers got hit with problems stem-
ming from changes made to other pieces of soft-
ware that probably would not have been imple-
mented that way if anyone had understood their
code better. Because the problem had a gradual
onset, the CCB was slow to recognize the extent of
the problems. To solve this, an architect from the

new code site joined the CCB. He added the broad
and deep knowledge of the code design developed
from his site to CCB decisions, which largely allevi-
ated the problems.

Another process challenge involved evolving
practices that both sites shared. One case was a sys-
tem developed by one site for debugging code.
They used a series of numbers that represented dif-
ferent kinds of problems in the code, so that when
the system broke, the developers understood why.
However, this system of numbers and the processes
that generated and used them were incomprehen-
sible to developers at the other site for a consider-
able time.

DISTANCE AND FLEXIBLE AD HOC
COMMUNICATION

Architectures, plans, and processes are all vital co-
ordination mechanisms in software projects. However,
their effectiveness extends only as far as our ability to
see into the future. Handling the unanticipated both
rapidly and gracefully requires flexible ad hoc com-
munication. This need became clear as we examined
how distance interfered in a variety of ways with the
project teams’effective communication.

Unplanned contact
When developers work at the same location,

project members run into each other frequently.
These chance meetings are basically social; they are
not necessarily intended to request help or to no-
tify others of specific events. However, these un-

planned contacts are surpris-
ingly important in keeping
projects coordinated. For ex-
ample, one developer de-
scribed a chance meeting
where he discovered that he

and his coworker had contradictory assumptions
about which board would have a particular digital
signal processing chip. They were able to resolve the
issue quickly, but had they not discovered the dif-
ference, it could have been extremely costly. What
makes this and similar incidents significant is that
the participants were not aware of a need to coor-
dinate, yet they exchanged critical information.

Unsurprisingly, there were no chance discussions
across sites. As a result, the developers didn’t recog-
nize and resolve many conflicts early on. It was also
harder to pass general information across sites such

6 6 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

Collocated developers can initiate 
communication easily because they know 

who is around and if they are available.



as how things work, what issues have priority, re-
sponsibility assignments, and who was an expert at
what. The lack of chance encounters also inhibited
the transfer of tools across sites. For example, de-
velopers at one site developed a useful step-tracing
tool, which spread throughout the site by word of
mouth. Developers at the other site did not know
of the tool’s existence for months and took weeks
to solve problems that could have been handled
quickly with it.

Knowing whom to contact
Developers often reported

great difficulty in deciding who
to contact at the other site with
questions. They devised several
workarounds for this, although
none were entirely satisfactory.
One way was to find the author of the relevant sys-
tem part’s documentation; he or she often knew
the answer or could point to an individual who
might. Another strategy was to contact a system ar-
chitect or project manager at the other site because
they had a broad knowledge of who was working
on what.

Once some of the developers spent a significant
amount of time at the other site, they became con-
tact people or liaisons. A visitor from the UK, for ex-
ample, would often be used by those in Germany to
help them figure out who to contact. When these
people returned to their own sites, they also acted
as the first contact point for people at the other site.
In addition, people would often come to them with
a wide variety of questions about how things
worked at the other site. This, of course, imposed a
significant cost on the liaisons, particularly in the
earlier days when there were few people with cross-
site experience.

The difficulty of initiating contact
Collocated developers can initiate communica-

tion easily because they know who is around and if
they are available. For example, if someone’s office is
only a few feet away, it’s easy to contact them. More
significantly, it is socially comfortable to do so be-
cause you know them, know how to approach them,
and have a good sense of how important your ques-
tion is relative to what they seem to be doing at the
moment. For developers at different locations, the
difficulty of initiating contact was often much
greater. Developers found it hard to know whether
someone was available. Unanswered phone calls,

for example, could mean someone was in a meet-
ing, working on a hard problem, in the midst of a cri-
sis, away for a site-wide holiday, or on vacation.

Another problem was the time difference be-
tween the two sites. Although there is only an hour
difference between the UK and Germany, it still led
to many missed hours during the day. There was an
hour lost at the beginning and end of each day and
another hour lost due to different lunch times. The
problem was compounded because the German site
generally started earlier and left earlier, eliminating

an additional hour or two of potential overlap time.
We noticed that across sites, people seemed

more unresponsive—not answering e-mail or voice
mail promptly—which reduced the incentives to
communicate because a single message was not
likely to be effective. Furthermore, it was harder to
assess the importance of a message from the other
site because the receiver did not understand the
context well enough to determine the question’s im-
portance. In general, the default assumption for
messages sent by unknown people was that they
were unimportant.

Initiating contact was particularly difficult in the
frequent cases requiring more that two people to
solve a problem. Issues that could be resolved very
quickly just by gathering the right people in front
of a whiteboard frequently stretched out for many
days when multiple sites were involved.

We identified three consequences of the diffi-
culty of initiating contact. First, developers did not
try to communicate as frequently as they would
have; they were more inclined to take the risk that
problems would not arise if they did not check, so
developers reported that they were not consulted
on decisions made at the other site that affected
them. Second, cycle time increased. Even when mes-
sages were answered promptly, resolution took far
longer and stretched into the next day. Worse, it
often took several days, rather than minutes or
hours, to make the right contact. Finally, issues had
to be escalated to management more often.

The ability to communicate effectively
The most obvious obstacle to communicating

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 6 7

The most obvious obstacle to communicating
across sites is the inability to share the same
environment and to see what is happening at
the other site.



across sites is the inability to share the same envi-
ronment and to see what is happening at the other
site. For example, developers found it hard to review
documents with someone over the phone, because
they couldn’t point to specific items. We discuss
other, more serious problems in the boxed text, “The
Consequences of Distance.”

Collaborative technologies offer the promise of
supporting cross-site development; however, we
found that they worked with varying degrees of suc-
cess. The language on this project was English, and
most of the native English speakers found the
phone useful for one-to-one communication, espe-
cially when they had very specific questions.
However, the nonnative English speakers found
these same telephone conversations much less ef-
fective, because “it’s hard to explain something to
someone you don’t know in your second language.”
They also found that conversations frequently be-
came emotional and required considerable time and
energy.

The nonnative English speakers preferred e-mail
communication because it allowed them to spend
time composing and translating their response.
Unlike the phone, it relieved the pressure of com-

municating in a less-familiar language in real time
about complex issues. Furthermore, the developers
were able to overcome some of the limitations of
this text-only medium by constructing text dia-
grams, or simple diagrams built from text charac-
ters. They also attached other text documents to
messages, such as log files. However, document dis-
tribution was still difficult, because the developers
used different platforms, including Unix and PC ma-
chines, along with a variety of word processors.

The project had difficulties with cross-site meet-
ings. At a single site, developers can gather to dis-
cuss a problem and reach a conclusion. Across sites,
developers found it much harder because confer-
ence calls tended to be less than satisfactory for dis-
cussing technical issues (although they worked sat-
isfactorily for simple issues and status reports). As
one developer said, “every conference call I walked
out of, if I asked somebody ‘What do you understand
from it?’ they said, ‘I don’t know.’”

The different cultures also influenced the team’s
ability to communicate effectively. One difference
was the more direct communication style of the
Germans as compared to the British. A German de-
veloper mentioned that Germans are accustomed
to calling someone up and immediately saying, for
example, that there is a problem with their code. The
British, on the other hand, tend to expect more of a
greeting and an indirect “polite”form  of suggesting
possible errors. The German style initially seemed
rude to the British, while the British style often con-
fused the Germans, who wondered why the caller
didn’t come to the point.

Primarily, these communication problems led to
lengthened cycle time to resolve systems issues.
One developer estimated that any necessary, yet
small, changes involving only one site were resolved
within an hour. The same change, if trivial, probably
took a day if two sites were involved, and several
days or more for nontrivial changes. However, some
developers mentioned that the communication dif-
ficulties also influenced the way in which they mod-
ified the code. They strove to make absolutely min-
imal changes, regardless of what the best way to
make the change would be, because they were so
worried about how hard it would be to repair the
problem if they “broke the system.”

Lack of trust
Initially, there was a lack of trust between the

sites, because the developers worried that their site
would be shut down, leading to a reluctance to

6 8 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

T H E C O N S E Q U E N C E S O F D I S T A N C E

Based on our qualitative observations, the primary effect of dis-

tance is that it stretches out issue resolution. Even relatively simple is-

sues that could be resolved in a few minutes or hours if all the needed

parties were collocated and could gather around a white board often

take days or weeks to resolve. When the issue arises, it is difficult to

know who to contact, how to get and hold their attention, how to un-

derstand and be understood, and so on. Here is an example of how

even the simplest and most straightforward things can be trouble-

some.

The documentation for a particular function directed the user to

supply certain arguments to return particular parameters, or to “enter

blank”to get all the parameters. The developer was not located at the

site where the function was tested. The tester wrote a problem report,

noting that the function did not return all parameters described in the

documentation. The developer to whom the report was assigned, how-

ever, could not duplicate the error. They exchanged messages for three

weeks, until the developer flew to the test site because the problem

was holding up work. Within the first five minutes, the developer

watched the tester type in “b-l-a-n-k” and then hit return. A misun-

derstanding that could have been resolved in a few minutes took three

weeks.



share information. The two sites did not see them-
selves as partners, cooperating toward the same
end. This manifested itself in “uncharitable” inter-
pretations of behavior. For example, if someone said,
“we can’t make that change,”it was often interpreted
as, “we don’t find it convenient to make that
change.”

This started to improve when about six people
from the UK visited the German site for significant
periods of time to work on integration difficulties.
After working together, the relationships between
the sites began to change. One developer said,
“things eased a lot when we met these people face
to face, instead of over telephones and e-mail. We
worked more closely and resolved things much
quicker.”

Several factors contributed to the change. The
differences in cultures were seen in context and be-
came less mystifying. It also let developers see that
both sites were struggling to meet a very aggressive
schedule. Working face to face let the developers es-
tablish a set of common goals and purposes. Finally,
the time spent at the other site familiarized each
party with the terminology and problem-solving
style of the other.

As a result, the developers interpreted behavior
more charitably. Rather than assuming the other
site’s position in a disagreement was purely arbitrary,
each site was more likely to believe that others had
reasons for their positions. Furthermore, when dis-
agreements arose, the developers were more able
to understand each other, and as a result, find com-
mon solutions.

OVERCOMING DISTANCE

Studying the challenges of multisite develop-
ment has revealed the key roles both of coordina-
tion mechanisms (such as architecture, plan, and
process) and informal communication in coordinat-
ing software development work. The most effective
approaches to overcoming distance will have to ad-
dress both parts of the equation.

We believe that the qualitative evidence from our
case study strongly supports Conway’s and Parnas’
positions that the essence of good design is facili-
tating coordination among developers. Geographic
distribution is just an extreme case where coordi-
nation is more difficult, and good design is corre-
spondingly more important.

Good design is vital, but it is not enough. It is also

essential to coordinate when, how, where, and by
whom the product will be developed. For example,
when intermediate work products are handed off
between groups, it is necessary for both to have a
clear idea of what steps have and have not been car-
ried out at that point. This generally requires a com-
mon understanding of a defined development
process. Large projects are also replete with tempo-
ral dependencies that have major implications for
resource planning and on-time delivery. Just as ar-
chitectures play a vital role in coordination, so do
project plans, defined processes, and staffing pro-
files.

Stability of the design is also important for multi-
site coordination. If you assign work to different

teams and sites on the basis of an architecture that
is constantly changing, the benefits of modularity
might be completely lost as interfaces, functional-
ity, and project commitments are continually rene-
gotiated. In fact, Conway pointed this out long ago
when he noted that you can only optimize the or-
ganizational arrangements with respect to “the sys-
tem concept in effect at that time.”1 This observa-
tion applies not only to the architecture, but also to
the plan, the processes, and all of the coordination
mechanisms. Instability creates an enormous need
for communication, which is precisely what distrib-
uted organizations do least well.

The results of this case study offer us several
lessons for multisite development. The first three
lessons will help to reduce the need for cross-site
communication:

♦ Attend to Conway’s Law: Have a good, modu-
lar design and use it as the basis for assigning work
to different sites. The more cleanly separated the
modules, the more likely the organization can suc-
cessfully develop them at different sites.

♦ To the extent possible, only split the devel-
opment of well-understood products where archi-
tectures, plans, and processes are likely to be sta-
ble. Instability will greatly increase the need for
communication.

♦ Record decisions and make sure this docu-
mentation is easily available. In particular, docu-
menting specification refinements and decisions
reached in multisite meetings will save many trou-
blesome misunderstandings.

S e p t e m b e r / O c t o b e r  1 9 9 9 I E E E  S o f t w a r e 6 9

Good design is vital, but good
design is not enough.



Second, take all possible steps to overcome the
barriers to informal communication:

♦ Front-load travel: Don’t postpone using the
travel budget; bring people who will need to com-
municate together early on. All other means of com-
munication will work better once developers, testers,
and managers have some face-to-face time to-
gether.

♦ Plan travel to create a pool of liaisons. Give the
early travelers the explicit assignment of meeting
people in a variety of groups at the other site and
learning the overall organizational structure. Try to
send gregarious people who will enjoy and be ef-
fective in this role. When they return, make it known
that they can help with cross-site issues, and free up
some of their time to do so.

♦ Invest in tools that address the real problems.
While video conferencing, desktop video, electronic
bulletin boards, and workflow applications might
add value in some circumstances, they do not di-
rectly address the core problems we observed.
Distributed organizations desperately need tools
that make it easier to find organizational informa-
tion, to maintain awareness about the availability
of people, and to have more effective cross-site
meetings, especially spontaneous ad hoc sessions.

With vision obscured by perfect hindsight, it is
easy to conclude that all of the coordination

problems reported in this case study could have
been prevented. Of course, drastically reducing un-
expected events would be an enormous help, and
much software engineering research is devoted to
just that goal. But progress in cost and schedule es-
timation, software architectures, software processes,
and verification techniques—disciplines that would
make development more predictable—is slow at
best, and project decisions must often be made very
quickly, on limited information. For the foreseeable
future, projects must continue to cope with unan-
ticipated events that have significant consequences.
Effective channels for informal, ad hoc communica-
tion will continue to be a critical organizational ca-
pability for adjusting quickly to the unexpected, re-
covering from errors, and managing the effects of
change. ❖

ACKNOWLEDGMENTS
We thank the Lucent Technologies department for their

time and patience with our questions.

REFERENCES
1. M.E. Conway, “How Do Committees Invent?” Datamation, Vol.

14, No. 4, Apr. 1968, pp. 28–31.

2. D.L. Parnas, “On the Criteria to Be Used in Decomposing
Systems into Modules,” Comm. ACM, Vol. 15, No. 12, 1972, pp.
1053–1058.

3. B. Curtis, H. Krasner, and N. Iscoe, “A Field Study of the Software
Design Process for Large Systems,” Comm. ACM, Vol. 31, No. 11,
1988, pp. 1268–1287.

4. R.E. Grinter, “Recomposition: Putting It All Back Together
Again,” Proc. ACM Conf. Computer Supported Cooperative Work,
ACM Press, New York, 1998, pp. 393–403.

5 . R.E. Kraut and L.A. Streeter, “Coordination in Software
Development,” Comm. ACM, Vol. 38, No. 3, 1995, pp. 69–81.

6. D.E. Perry, N.A. Staudenmayer, and L.G. Votta, “People,
Organizations, and Process Improvement,” IEEE Software,
July/Aug. 1994, pp. 36–45.

7. J.D. Herbsleb and R.E. Grinter, “Splitting the Organization and
Integrating the Code: Conway’s Law Revisited,” Proc. Int’l Conf.
Software Eng., ACM Press, New York, 1999, pp 85–95.

7 0 I E E E  S o f t w a r e S e p t e m b e r / O c t o b e r  1 9 9 9

James D. Herbsleb is a member of the
technical staff in the Software Production
Research department at Bell Labs, Lucent
Technologies. He is currently leading a
Bell Labs research project that is develop-
ing tools, practices, and organizational
models to address the problems of glob-
ally-distributed software engineering. In

addition to geographically distributed software development,
his research interests include computer-supported cooperative
work and empirical software engineering. He has an MS in
computer science from the University of Michigan and a PhD in
psychology from the University of Nebraska.

Rebecca E. Grinter is a member of the
technical staff in the Software Produc-
tion Research department at Bell Labs,
Lucent Technologies. Her research inter-
ests include empirical studies of soft-
ware development and computer-sup-
ported cooperative work. She received a
BSc in computer science from the Uni-

versity of Leeds, England, and an MS, and PhD in computer
science from the University of California, Irvine. Contact her at
beki@research.bell-labs.com.

About the Authors

Readers can contact Herbsleb at Bell Laboratories, Lucent
Technologies, 263 Shuman Blvd., Naperville, IL 60566;
herbsleb@research.bell-labs.com.


