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Note to other teachers and users of 
these slides. Andrew would be delighted 
if you found this source material useful in 
giving your own lectures. Feel free to use 
these slides verbatim, or to modify them 
to fit your own needs. PowerPoint 
originals are available. If you make use 
of a significant portion of these slides in 
your own lecture, please include this 
message, or the following link to the 
source repository of Andrew’s tutorials: 
http://www.cs.cmu.edu/~awm/tutorials . 
Comments and corrections gratefully 
received. 

This is re
ordered material 

from the Neural Nets 

lecture and the “Favorite 

Regression Algorithms” 

lecture
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Single-
Parameter 

Linear 
Regression



2

Copyright © 2001, 2003, Andrew W. Moore 3

Linear Regression

Linear regression assumes that the expected value of 
the output given an input, E[y|x], is linear.

Simplest case: Out(x) = wx for some unknown w.

Given the data, we can estimate w.

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET

← 1 →

↑
w
↓
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1-parameter linear regression
Assume that the data is formed by

yi = wxi + noisei

where…
• the noise signals are independent
• the noise has a normal distribution with mean 0 

and unknown variance σ2

p(y|w,x) has a normal distribution with
• mean wx
• variance σ2
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Bayesian Linear Regression
p(y|w,x) = Normal (mean wx, var σ2)

We have a set of datapoints (x1,y1) (x2,y2) … (xn,yn) 
which are EVIDENCE about w.

We want to infer w from the data.
p(w|x1, x2, x3,…xn, y1, y2…yn)

•You can use BAYES rule to work out a posterior 
distribution for w given the data.
•Or you could do Maximum Likelihood Estimation
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Maximum likelihood estimation of w

Asks the question:
“For which value of w is this data most likely to have 

happened?”
<=>

For what w is
p(y1, y2…yn |x1, x2, x3,…xn, w) maximized?

<=>
For what w is

maximized? ),(
1

i

n

i
i xwyp∏

=
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Linear Regression

The maximum 
likelihood w is 
the one that 
minimizes sum-
of-squares of 
residuals

We want to minimize a quadratic function of w.

( )

( ) ( ) 222

2

2 wxwyxy

wxy

i
i

iii

i
ii

∑∑ ∑

∑
+−=

−=Ε

E(w) w
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

( ) wxx =Out
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

Note:   In Bayesian stats you’d have 

ended up with a prob dist of w

And predictions would have given a prob 

dist of expected output

Often useful to know your confidence.  

Max likelihood can give some kinds of 

confidence too.

p(w)

w

( ) wxx =Out
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Multivariate 
Linear 

Regression
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Multivariate Regression
What if the inputs are vectors?

Dataset has form
x1 y1

x2 y2

x3 y3
.:                                    :
.
xR yR

3 .

. 4                                              
6 .

. 5

. 8

. 10

2-d input 
example

x1

x2
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Multivariate Regression
Write matrix X and Y thus:
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RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2   

...

...

...

..........

..........

..........

y

x

x
x

x

1

(there are R datapoints.  Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood w is w = (XTX) -1(XTY)
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Multivariate Regression
Write matrix X and Y thus:
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=

RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2   

...

...

...

..........

..........

..........

y

x

x
x

x

1

(there are R datapoints.  Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood w is w = (XTX) -1(XTY)

IMPORTANT EXERCISE:  
PROVE IT !!!!!
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Multivariate Regression (con’t)

The max. likelihood w is w = (XTX)-1(XTY)

XTX is an m x m matrix:  i,j’th elt is

XTY is an m-element vector:  i’th elt

∑
=

R

k
kjkixx

1

∑
=

R

k
kki yx

1
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Constant Term 
in Linear 

Regression
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What about a constant term?
We may expect 
linear data that does 
not go through the 
origin.

Statisticians and 
Neural Net Folks all 
agree on a simple 
obvious hack.

Can you guess??
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The constant term
• The trick is to create a fake input “X0” that 

always takes the value 1

2055
1743
1642
YX2X1

1
1
1
X0

2055
1743
1642
YX2X1

Before:
Y=w1X1+ w2X2 

…has to be a poor 
model

After:
Y= w0X0+w1X1+ w2X2 

= w0+w1X1+ w2X2 

…has a fine constant 
term

In this example, 
You should be able 
to see the MLE w0
, w1 and w2 by 
inspection 
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Linear 
Regression with 
varying noise

Heteroscedasticity
...
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Regression with varying noise
• Suppose you know the variance of the noise that 

was added to each datapoint.

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

1/423
432
1/412
111
4½½
σi

2yixi

),(~ 2
iii wxNy σAssume What’s th

e MLE 

estim
ate of w?



11

Copyright © 2001, 2003, Andrew W. Moore 21

MLE estimation with varying noise
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Assuming independence 
among noise and then 
plugging in equation for 
Gaussian and simplifying.

Setting dLL/dw
equal to zero

Trivial algebra
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This is Weighted Regression
• We are asking to minimize the weighted sum of 

squares

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin σ

2

1

iσ
where weight for i’th datapoint is
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Non-linear 
Regression
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Non-linear Regression
• Suppose you know that y is related to a function of x in 

such a way that the predicted values have a non-linear 
dependence on w, e.g:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

33
23
32
2.51
½½
yixi

),(~ 2σii xwNy +Assume What’s th
e MLE 

estim
ate of w?
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w
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R
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ii

xw
xwy
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?
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Non-linear MLE estimation
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?

Common (but not only) approach:
Numerical Solutions:
• Line Search
• Simulated Annealing
• Gradient Descent
• Conjugate Gradient
• Levenberg Marquart
• Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as 
E.M. (See Gaussian Mixtures lecture 
for introduction)
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Polynomial 
Regression
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Polynomial Regression
So far we’ve mainly been dealing with linear regression

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

3

::

11

21

:

3

7
Z= y=

z1=(1,3,2)..

zk=(1,xk1,xk2)

y1=7..

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

::

11

41

:

3

7Z=
y=

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,)

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2+
β3 x1

2 + β4 x1x2 + β5 x2
2
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

::

11

41

:

3

7Z=
y=

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,)

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2+
β3 x1

2 + β4 x1x2 + β5 x2
2

Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with m
inputs?

•1 constant term

•m linear terms

•(m+1)-choose-2 = m(m+1)/2 quadratic terms

(m+2)-choose-2 terms in total = O(m2)

Note that solving β=(ZTZ)-1(ZTy) is thus O(m6)
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Qth-degree polynomial Regression

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

…:

…1

…1

:

3

7
Z=

y=

z=(all products of powers of inputs in 
which sum of powers is q or less,)

β=(ZTZ)-1(ZTy)

yest = β0+ 
β1 x1+…
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m inputs, degree Q: how many terms?
= the number of unique terms of the form

Qqxxx
m

i
i

q
m

qq m ≤∑
=1

21   where...21

Qqxxx
m

i
i

q
m

qqq m =∑
=0

21   where...1 210

= the number of unique terms of the form

= the number of lists of non-negative integers [q0,q1,q2,..qm] 
in which Σqi = Q

= the number of ways of placing Q red disks on a row of 
squares of length Q+m       = (Q+m)-choose-Q

Q=11, m=4

q0=2 q2=0q1=2 q3=4 q4=3
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Radial Basis 
Functions
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Radial Basis Functions (RBFs)

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

…

…

…

…

…

…

…

…

…

…

…

…

……

……

……

:

3

7
Z=

y=

z=(list of radial basis function evaluations)

β=(ZTZ)-1(ZTy)

yest = β0+ 
β1 x1+…
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1-d RBFs

yest = β1 φ1(x) + β2 φ2(x) + β3 φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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Example

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)
then given Q basis functions, define the matrix Z such that Zkj = 
KernelFunction( | xk - ci | / KW) where xk is the kth vector of inputs

And as before, β=(ZTZ)-1(ZTy)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
(But I’d like to see, or hope someone’s already done, a 
hybrid, where the ci ’s and KW are updated with gradient 
descent while the βj’s use matrix inversion)
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Radial Basis Functions in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Two inputs.

Outputs (heights 
sticking out of page) 
not shown.
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Happy RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors
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Crabby RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

What’s the 
problem in this 
example?
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x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

More crabby RBFs And what’s the 
problem in this 
example?
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Hopeless!

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this is a disaster!
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Unhappy

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this isn’t good either..
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Robust 
Regression
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Robust Regression

x

y
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Robust Regression

x

y

This is the best fit that 
Quadratic Regression can 
manage
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Robust Regression

x

y

…but this is what we’d 
probably prefer
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.

But you are 
pathetic.
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
Weighted regression was described earlier in 
the “vary noise” section, and is also discussed 
in the “Memory-based Learning” Lecture.

Guess what happens next?
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
I taught you how to do this in the “Instance-
based” lecture (only then the weights 
depended on distance in input-space)

Repeat whole thing until 
converged!
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Robust Regression---what we’re 
doing

What regular regression does:

Assume yk was originally generated using the 
following recipe:

yk = β0+ β1 xk+ β2 xk
2 +N(0,σ2)

Computational task is to find the Maximum 
Likelihood β0 , β1 and β2 

Copyright © 2001, 2003, Andrew W. Moore 60

Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge
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Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge

Mysteriously, the 
reweighting procedure 
does this computation 
for us.

Your first glimpse of 
two spectacular letters: 

E.M.
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Regression 
Trees
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Regression Trees
• “Decision trees for regression”

Copyright © 2001, 2003, Andrew W. Moore 64

A regression tree leaf

Predict age = 47

Mean age of records 
matching this leaf node
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A one-split regression tree

Predict age = 36Predict age = 39

Gender?

Female Male
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Choosing the attribute to split on

• We can’t use 
information gain.

• What should we use?

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(1)|(
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(1)|(

Regression tree attribute selection: greedily 
choose the attribute that minimizes MSE(Y|X) 

Guess what we do about real-valued inputs?

Guess how we prevent overfitting
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Pruning Decision

Predict age = 36Predict age = 39

Gender?

Female Male

…property-owner = Yes

# property-owning females = 56712
Mean age among POFs = 39
Age std dev among POFs = 12

# property-owning males = 55800
Mean age among POMs = 36
Age std dev among POMs = 11.5

Use a standard Chi-squared test of the null-
hypothesis “these two populations have the same 
mean” and Bob’s your uncle.

Do I deserve 
to live?
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Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared



36

Copyright © 2001, 2003, Andrew W. Moore 71

Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared

Detail: Y
ou typ

ically i
gnore any 

categorica
l attrib

ute that has been tested 

on higher up in the tre
e during the 

regressio
n. But use all untested 

attrib
utes, a

nd use real-va
lued attrib

utes 

even if t
hey’ve

 been tested above
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Test your understanding

x

y

Assuming regular regression trees, can you sketch a 
graph of the fitted function yest(x) over this diagram?
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Test your understanding

x

y

Assuming linear regression trees, can you sketch a graph 
of the fitted function yest(x) over this diagram?
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Multilinear
Interpolation
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Multilinear Interpolation

x

y

Consider this dataset. Suppose we wanted to create a 
continuous and piecewise linear fit to the data
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Multilinear Interpolation

x

y

Create a set of knot points: selected X-coordinates 
(usually equally spaced) that cover the data

q1 q4q3 q5q2
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Multilinear Interpolation

x

y

We are going to assume the data was generated by a 
noisy version of a function that can only bend at the 
knots. Here are 3 examples (none fits the data well)

q1 q4q3 q5q2
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How to find the best fit?
Idea 1: Simply perform a separate regression in each 
segment for each part of the curve

What’s the problem with this idea?

x

y

q1 q4q3 q5q2
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How to find the best fit?

x

y

Let’s look at what goes on in the red segment

q1 q4q3 q5q2

h2

h3

233
2

2
3   where)()()( qqwh

w
xqh

w
xqxyest −=

−
+

−
=
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
xqxφ

w
qxxφ −

−=
−

−= 3
3

2
2 1)(,1)( where

φ2(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
xqxφ

w
qxxφ −

−=
−

−= 3
3

2
2 1)(,1)( where

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
qxxφ

w
qxxφ ||1)(,||1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
qxxφ

w
qxxφ ||1)(,||1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xφhxy
1

)()(





 <−

−
−=

otherwise0

 || if||1)( where wqx
w
qx

xφ i
i

i

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xφhxy
1

)()(





 <−

−
−=

otherwise0

 || if||1)( where wqx
w
qx

xφ i
i

i

φ2(x)

φ3(x)

And this is simply a basis function 
regression problem!

We know how to find the least 
squares hiis!
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…
First interpolate 
its value on two 
opposite edges… 7.33

7
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05

Notes:

This can easily be generalized 
to m dimensions.

It should be easy to see that it 
ensures continuity

The patches are not linear
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Doing the regression

x1

x2

Given data, how 
do we find the 
optimal knot 
heights?

Happily, it’s 
simply a two-
dimensional 
basis function 
problem.

(Working out 
the basis 
functions is 
tedious, 
unilluminating, 
and easy)

What’s the 
problem in 
higher 
dimensions?

9

7 8

3
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MARS: Multivariate 
Adaptive Regression 

Splines
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MARS
• Multivariate Adaptive Regression Splines
• Invented by Jerry Friedman (one of 

Andrew’s heroes)
• Simplest version:

Let’s assume the function we are learning is of the 
following form:

∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

Idea: Each 
gk is one of 

these
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

∑∑
= =

=
m

k
k

N

j

k
j

k
j

est xφhy
K

1 1
)()(x







<−
−

−=
otherwise0

 || if
||

1)( where k
k
jk

k

k
jk

k
j

wqx
w
qx

xφ

qk
j : The location of 

the j’th knot in the 
k’th dimension
hk

j : The regressed 
height of the j’th
knot in the k’th
dimension
wk: The spacing 
between knots in 
the kth dimension
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That’s not complicated enough!
• Okay, now let’s get serious. We’ll allow 

arbitrary “two-way interactions”:

∑ ∑∑
= +==

+=
m

k

m

kt
tkkt

m

k
kk

est xxgxgy
1 11

),()()(x

The function we’re 
learning is allowed to be 

a sum of non-linear 
functions over all one-d 

and 2-d subsets of 
attributes

Can still be expressed as a linear 
combination of basis functions

Thus learnable by linear regression

Full MARS: Uses cross-validation to 
choose a subset of subspaces, knot 
resolution and other parameters.
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If you like MARS…
…See also CMAC (Cerebellar Model Articulated 

Controller) by James Albus (another of 
Andrew’s heroes)
• Many of the same gut-level intuitions
• But entirely in a neural-network, biologically 

plausible way
• (All the low dimensional functions are by 

means of lookup tables, trained with a delta-
rule and using a clever blurred update and 
hash-tables)
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Where are we now?

In
pu

ts

Classifier
Predict

category

In
pu

ts Density
Estimator

Prob-
ability

In
pu

ts

Regressor
Predict
real no.

Dec Tree, Gauss/Joint BC, Gauss Naïve BC, 

Joint DE, Naïve DE, Gauss/Joint DE, Gauss Naïve 
DE

Linear Regression, Polynomial Regression,  RBFs, 
Robust Regression Regression Trees,  Multilinear 
Interp, MARS

In
pu

ts Inference
Engine Learn p(E1|E2)

Joint DE
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