Predicting Real-valued outputs: an introduction to Regression

Note to other teachers and users of these slides. Andrew would be delighted if you found this source material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit your own needs. PowerPoint originals are available. If you make use of a significant portion of these slides in of a significant portion of these slides
your own lecture, please include this your own lecture, please include this
message, or the following link to the message, or the following link to the
source repository of Andrew's tutorials: source repository of Andrew's tutorials:
http://www.cs.cmu.edu/~awm/tutorials $\frac{\text { http://www.cs.cmu.edu/~awm/tutorial }}{\text { Comments and corrections gratefully }}$ received.

Andrew W. Moore

 ProfessorSchool of Computer Science Carnegie Mellon University

www.cs.cmu.edu/~awm awm@cs.cmu.edu 412-268-7599

$$
\begin{aligned}
& \text { Single- } \\
& \text { Parameter } \\
& \text { Linear } \\
& \text { Regression }
\end{aligned}
$$

Linear Regression

DATASET

inputs	outputs
$x_{1}=1$	$y_{1}=1$
$x_{2}=3$	$y_{2}=2.2$
$x_{3}=2$	$y_{3}=2$
$x_{4}=1.5$	$y_{4}=1.9$
$x_{5}=4$	$y_{5}=3.1$

Linear regression assumes that the expected value of the output given an input, $E[y / x]$, is linear.
Simplest case: $\operatorname{Out}(x)=w x$ for some unknown w.
Given the data, we can estimate w.

1-parameter linear regression

Assume that the data is formed by

$$
y_{i}=w x_{i}+\text { noise }_{i}
$$

where...

- the noise signals are independent
- the noise has a normal distribution with mean 0 and unknown variance σ^{2}
$\mathrm{p}(y \mid w, x)$ has a normal distribution with
- mean wx
- variance σ^{2}

Bayesian Linear Regression $\mathrm{p}(y \mid w, x)=$ Normal (mean $w x$, var $\left.\sigma^{2}\right)$

We have a set of datapoints $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right)$ which are EVIDENCE about w.

We want to infer w from the data.

$$
\mathrm{p}\left(w x_{1}, x_{2}, x_{3}, \ldots x_{n}, y_{1}, y_{2} \ldots y_{n}\right)
$$

- You can use BAYES rule to work out a posterior distribution for w given the data.
- Or you could do Maximum Likelihood Estimation

Maximum likelihood estimation of w

Asks the question:
"For which value of w is this data most likely to have happened?"

$$
<=>
$$

For what w is

$$
\begin{aligned}
& \mathrm{p}\left(y_{1}, y_{2} \ldots y_{n} \mid x_{1,}, x_{2}, x_{3}, \ldots x_{n v} w\right) \text { maximized? } \\
& <=>
\end{aligned}
$$

For what w is

$$
\prod_{i=1}^{n} p\left(y_{i} \mid w, x_{i}\right) \text { maximized }
$$

For what w is

$$
\prod_{i=1}^{n} p\left(y_{i} \mid w, x_{i}\right) \text { maximized? }
$$

For what w is

$$
\prod_{i=1}^{n} \exp \left(-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2}\right) \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}-\frac{1}{2}\left(\frac{y_{i}-w x_{i}}{\sigma}\right)^{2} \text { maximized? }
$$

For what w is

$$
\sum_{i=1}^{n}\left(y_{i}-w x_{i}\right)^{2} \text { minimized? }
$$

Linear Regression

The maximum likelihood w is the one that minimizes sum-of-squares of residuals

$$
\begin{aligned}
& \mathrm{E}=\sum_{i}\left(y_{i}-w x_{i}\right)^{2} \\
& =\sum_{i} y_{i}^{2}-\left(2 \sum x_{i} y_{i}\right) w+\left(\sum x_{i}^{2}\right) w^{2}
\end{aligned}
$$

We want to minimize a quadratic function of w.

Linear Regression

Easy to show the sum of squares is minimized when

$$
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

The maximum likelihood
model is $\operatorname{Out}(x)=w x$

We can use it for prediction

Linear Regression

Easy to show the sum of squares is minimized when

$$
w=\frac{\sum x_{i} y_{i}}{\sum x_{i}^{2}}
$$

The maximum likelihood model is $\operatorname{Out}(x)=w x$

We can use it for prediction

Multivariate Linear Regression

Multivariate Regression

 What if the inputs are vectors?

2-d input example

Dataset has form

Multivariate Regression

Write matrix X and Y thus:

$$
\mathbf{x}=\left[\begin{array}{c}
\ldots . . \mathbf{x}_{1} \ldots . . \\
\ldots . . \mathbf{x}_{2} \ldots . . \\
\vdots \\
\ldots . . \mathbf{x}_{R} \ldots . .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \vdots & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{R}
\end{array}\right]
$$

(there are R datapoints. Each input has m components)
The linear regression model assumes a vector \boldsymbol{w} such that

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{\mathrm{m}} x[\mathrm{D}]
$$

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$

Multivariate Regression

Write matrix X and Y thus:

$$
\mathbf{x}=\left[\begin{array}{c}
\ldots \ldots \mathbf{x}_{1} \ldots . . \\
\ldots . \mathbf{x}_{2} \ldots . . \\
\vdots \\
\ldots . \mathbf{x}_{R} \ldots . .
\end{array}\right]=\left[\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1 m} \\
x_{21} & x_{22} & \ldots & x_{2 m} \\
& & \vdots & \\
x_{R 1} & x_{R 2} & \ldots & x_{R m}
\end{array}\right] \mathbf{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{R}
\end{array}\right]
$$

(there are R datapoints. Each input

IMPORTANT EXERCISE: PROVE IT !!!!!

The linear regression model assumes a vector \boldsymbol{w} such that

$$
\operatorname{Out}(\boldsymbol{x})=\boldsymbol{w}^{\top} \boldsymbol{x}=w_{1} x[1]+w_{2} x[2]+\ldots . w_{\mathrm{m}} x[\mathrm{D}]
$$

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$

Multivariate Regression (con't)

The max. likelihood \boldsymbol{w} is $\boldsymbol{w}=\left(X^{\top} X\right)^{-1}\left(X^{\top} Y\right)$
$X^{\top} X$ is an $m \times m$ matrix: i, j 'th elt is $\sum_{k=1}^{R} x_{k i} x_{k j}$
$\mathrm{X}^{\top} \mathrm{Y}$ is an m-element vector: $\mathrm{i}^{\text {th }}$ elt

Constant Term in Linear Regression

What about a constant term?

We may expect linear data that does not go through the origin.

Statisticians and Neural Net Folks all agree on a simple obvious hack.
height

Can you guess??

The constant term

- The trick is to create a fake input " X_{0} " that always takes the value 1

X_{1}	X_{2}	Y
2	4	16
3	4	17
5	5	20

Before:
$Y=w_{1} X_{1}+w_{2} X_{2}$
...has to be a poor model

In this example, You should be able to see the MLE w_{0} , w_{1} and w_{2} by inspection

X_{0}	X_{1}	X_{2}	Y
1	2	4	16
1	3	4	17
1	5	5	20

After:

$$
Y=w_{0} X_{0}+w_{1} X_{1}+w_{2} X_{2}
$$

$$
=w_{0}+w_{1} X_{1}+w_{2} X_{2}
$$

...has a fine constant term

Heteroscedasticity... Linear
 Regression with varying noise

Regression with varying noise

- Suppose you know the variance of the noise that was added to each datapoint.

x_{i}	y_{i}	σ_{i}^{2}
$1 / 2$	$1 / 2$	4
1	1	1
2	1	$1 / 4$
2	3	4
3	2	$1 / 4$

Assume $\quad y_{i} \sim N\left(w x_{i}, \sigma_{i}^{2}\right)$

MLE estimation with varying noise

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots, \sigma_{R}^{2}, w\right)=$
w

$$
\begin{gathered}
\operatorname{argmin} \sum_{i=1}^{R} \frac{\left(y_{i}-w x_{i}\right)^{2}}{\sigma_{i}^{2}}=\begin{array}{l}
\begin{array}{l}
\text { Assuming independence } \\
\text { among noise and then } \\
\text { plugging in equation for } \\
\text { Gaussian and simplifying. }
\end{array} \\
\left(w \text { such that } \sum_{i=1}^{R} \frac{x_{i}\left(y_{i}-w x_{i}\right)}{\sigma_{i}^{2}}=0\right)=\begin{array}{l}
\text { Setting dLL/dw } \\
\text { equal to zero }
\end{array} \\
\\
\frac{\left(\sum_{i=1}^{R} \frac{x_{i} y_{i}}{\left.\sum_{i=1}^{R} \frac{x_{i}^{2}}{\sigma_{i}^{2}}\right)}\right.}{}
\end{array} . \begin{array}{l}
\text { Trivial algebra }
\end{array}
\end{gathered}
$$

This is Weighted Regression

- We are asking to minimize the weighted sum of squares

$$
\operatorname{argmin}_{w} \sum_{i=1}^{R} \frac{\left(y_{i}-w x_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

$$
\text { where weight for i'th datapoint is } \frac{1}{\sigma_{i}^{2}}
$$

Non-linear Regression

Non-linear Regression

- Suppose you know that y is related to a function of x in such a way that the predicted values have a non-linear dependence on w, e.g:

x_{i}	y_{i}
$1 / 2$	$1 / 2$
1	2.5
2	3
3	2
3	3

Assume $y_{i} \sim N\left(\sqrt{w+x_{i}}, \sigma^{2}\right)$

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$

$$
\begin{gathered}
w \\
\operatorname{argmin} \sum_{i=1}^{R}\left(y_{i}-\sqrt{w+x_{i}}\right)^{2}= \\
\left.w \text { such that } \sum_{i=1}^{R} \frac{y_{i}-\sqrt{w+x_{i}}}{\sqrt{w+x_{i}}}=0\right)=\begin{array}{l}
\begin{array}{l}
\text { Assuming i.i.d. anc } \\
\text { then plugging in } \\
\text { equation for Gauss } \\
\text { and simplifying. }
\end{array} \\
\begin{array}{l}
\text { Setting dLL/dw } \\
\text { equal to zero }
\end{array}
\end{array}
\end{gathered}
$$

Non-linear MLE estimation

$$
\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=
$$

We're down the algebraic toilet

Non-linear MLE estimation

$\operatorname{argmax} \log p\left(y_{1}, y_{2}, \ldots, y_{R} \mid x_{1}, x_{2}, \ldots, x_{R}, \sigma, w\right)=$

Polynomial Regression

Polynomial Regression

So far we've mainly been dealing with linear regression

Quadratic Regression

It's trivial to do linear fits of fixed nonlinear basis functions

Quadratic Regression

It's trii Each component of a z vector is called a term.

| X_{1} | X | Each column of the Z matrix is called a term column |
| :--- | :--- | :--- | :--- |
| 3 | 2 | How many terms in a quadratic regression with m |
| 1 | 1 | inputs? |

$Q^{\text {th }}$-degree polynomial Regression

m inputs, degree Q : how many terms?

$=$ the number of unique terms of the form

$$
x_{1}^{q_{1}} x_{2}^{q_{2}} \ldots x_{m}^{q_{m}} \text { where } \sum_{i=1}^{m} q_{i} \leq Q
$$

$=$ the number of unique terms of the form

$$
1^{q_{0}} x_{1}^{q_{1}} x_{2}^{q_{2}} \ldots x_{m}^{q_{m}} \text { where } \sum_{i=0}^{m_{i}} q_{i}=Q
$$

$=$ the number of lists of non-negative ${ }^{j=0} q_{i n t e g e r s ~}\left[q_{0}, q_{1}, q_{22} . . . q_{m}\right]$ in which $\Sigma q_{i}=Q$
$=$ the number of ways of placing Q red disks on a row of squares of length $\mathrm{Q}+\mathrm{m}=(\mathrm{Q}+\mathrm{m})$-choose- Q

Radial Basis Functions

Radial Basis Functions (RBFs)

1-d RBFs

$y^{\text {est }}=\beta_{1} \phi_{1}(x)+\beta_{2} \phi_{2}(x)+\beta_{3} \phi_{3}(x)$
where
$\phi_{i}(x)=$ KernelFunction $\left(\left|x-c_{i}\right| / K W\right)$

RBFs with NonLinear Regression

But how do we now find all the $\beta_{j}^{\prime} \mathrm{s}, c_{i}^{\prime}$ s and $K W$?

RBFs with NonLinear Regression

But how do we now find all the $\beta_{j}^{\prime} s, c_{i}^{\prime}$ s and $K W$?
Answer: Gradient Descent

RBFs with NonLinear Regression

But how do we now find all the $\beta_{\dot{\prime}}^{\prime} \mathrm{s}, c_{i}^{\prime}$ s and $K W$?

Radial Basis Functions in 2-d

Two inputs.
Outputs (heights sticking out of page) not shown.

Hopeless! Even before seeing the data, you should understand that this is a disaster!

Unhappy Even before seeing the data, you should understand that this isn't good either..

Robust Regression

LOESS-based Robust Regression

LOESS-based Robust Regression

LOESS-based Robust Regression

Robust Regression

Then redo the regression using weighted datapoints.

For $\mathrm{k}=1$ to R ...
-Let $\left(x_{k} y_{k}\right)$ be the kth datapoint
-Let $y^{\text {est }}$ k be predicted value of y_{k}
-Let w_{k} be a weight for datapoint k that is large if the datapoint fits well and small if it fits badly:
the "vary noise" section, and is also discussed in the "Memory-based Learning" Lecture.

$$
w_{k}=\text { KernelFn }\left(\left[y_{k}-y^{e s t}{ }_{k}\right]^{2}\right)
$$

Guess what happens next?

Robust Regression---what we're doing

What regular regression does:

Assume y_{k} was originally generated using the following recipe:

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$

Computational task is to find the Maximum Likelihood β_{0}, β_{1} and β_{2}

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_{k} was originally generated using the following recipe:

With probability p :

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$

But otherwise

$$
y_{k} \sim N\left(\mu, \sigma_{\text {huge }}{ }^{2}\right)
$$

Computational task is to find the Maximum Likelihood $\beta_{0}, \beta_{1}, \beta_{2}, p, \mu$ and $\sigma_{\text {huge }}$

Robust Regression---what we're doing

What LOESS robust regression does:

Assume y_{k} was originally generated using th Mysteriously, the following recipe:

With probability p :

$$
y_{k}=\beta_{0}+\beta_{1} x_{k}+\beta_{2} x_{k}^{2}+N\left(0, \sigma^{2}\right)
$$ reweighting procedure does this computation for us.

But otherwise

$$
y_{k} \sim N\left(\mu, \sigma_{\text {huge }}{ }^{2}\right)
$$

Computational task is to find the Maximum Likelihood $\beta_{0}, \beta_{1}, \beta_{2}, p, \mu$ and $\sigma_{\text {huge }}$

Regression Trees

Regression Trees

- "Decision trees for regression"

A regression tree leaf

A one-split regression tree

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	$5+$	72
$:$	$:$	$:$	$:$	$:$

- We can't use information gain.
- What should we use?

Choosing the attribute to split on

Gender	Rich?	Num. Children	Num. Beany Babies	Age
Female	No	2	1	38
Male	No	0	0	24
Male	Yes	0	$5+$	72
$:$	$:$	$:$	$:$	$:$

$\operatorname{MSE}(\mathrm{Y} \mid \mathrm{X})=$ The expected squared error if we must predict a record's Y value given only knowledge of the record's X value
If we're told $x=j$, the smallest expected error comes from predicting the mean of the Y-values among those records in which $x=j$. Call this mean quantity $\mu_{y}{ }^{x=j}$
Then...

$$
\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{\left(k \text { such that } x_{k}=j\right)}\left(y_{y}-\mu_{y}^{x=j}\right)^{2}
$$

Choosing the attribute to split on

Gender	Rich?	Num.	Num. Beany	Age	
Female	Regression tree attribute selection: greedily choose the attribute that minimizes $\operatorname{MSE}(\mathrm{Y} \mid \mathrm{X})$				
Male					
Male	Y Guess what we do about real-valued inputs?				
:	Guess how we prevent overfitting				

 value given only knowledge of the record's X value
If we're told $x=j$, the smallest expected error comes from predicting the mean of the Y-values among those records in which $x=j$. Call this mean quantity $\mu_{y}^{x=j}$
Then...

$$
\operatorname{MSE}(Y \mid X)=\frac{1}{R} \sum_{j=1}^{N_{X}} \sum_{\left(k \text { such that } x_{k}=j\right)}\left(y_{k}-\mu_{y}^{x=j}\right)^{2}
$$

Linear Regression Trees

...property-owner $=$ Yes

Leaves contain linear functions (trained using linear regression on all records matching that leaf)

Split attribute chosen to minimize MSE of regressed children.

Pruning with a different Chisquared

Test your understanding

Assuming regular regression trees, can you sketch a graph of the fitted function $\left.y^{\text {est }(}\right)$) over this diagram?

Test your understanding

Assuming linear regression trees, can you sketch a graph of the fitted function $y^{\text {est }}(x)$ over this diagram?

Multilinear Interpolation

Multilinear Interpolation

Consider this dataset. Suppose we wanted to create a continuous and piecewise linear fit to the data

Multilinear Interpolation

Create a set of knot points: selected X-coordinates (usually equally spaced) that cover the data

Multilinear Interpolation

We are going to assume the data was generated by a noisy version of a function that can only bend at the knots. Here are 3 examples (none fits the data well)

How to find the best fit?

Idea 1: Simply perform a separate regression in each segment for each part of the curve

How to find the best fit?

Let's look at what goes on in the red segment

$$
y^{\text {est }}(x)=\frac{\left(q_{3}-x\right)}{w} h_{2}+\frac{\left(q_{2}-x\right)}{w} h_{3} \text { where } w=q_{3}-q_{2}
$$

How to find the best fit?

In the red segment...

$$
y^{e s t}(x)=h_{2} \varphi_{2}(x)+h_{3} \varphi_{3}(x)
$$

$$
\text { where } \varphi_{2}(x)=1-\frac{x-q_{2}}{w}, \varphi_{3}(x)=1-\frac{q_{3}-x}{w}
$$

How to find the best fit?

In the red segment...

$$
y^{e s t}(x)=h_{2} \varphi_{2}(x)+h_{3} \varphi_{3}(x)
$$

How to find the best fit?

In the red segment...

$$
y^{e s t}(x)=h_{2} \varphi_{2}(x)+h_{3} \varphi_{3}(x)
$$

How to find the best fit?

In the red segment...

$$
y^{e s t}(x)=h_{2} \varphi_{2}(x)+h_{3} \varphi_{3}(x)
$$

$$
\text { where } \varphi_{2}(x)=1-\frac{\left|x-q_{2}\right|}{w}, \varphi_{3}(x)=1-\frac{\left|x-q_{3}\right|}{w}
$$

MARS: Multivariate Adaptive Regression Splines

MARS

- Multivariate Adaptive Regression Splines
- Invented by Jerry Friedman (one of Andrew's heroes)
- Simplest version:

Let's assume the function we are learning is of the following form:

$$
y^{e s t}(\mathbf{x})=\sum_{k=1}^{m} g_{k}\left(x_{k}\right)
$$

Instead of a linear combination of the inputs, it's a linear combination of non-linear functions of individua/inputs

MARS

$$
y^{e s t}(\mathbf{x})=\sum_{k=1}^{m} g_{k}\left(x_{k}\right)
$$

Instead of a linear combination of the inputs, it's a linear combination of non-linear functions of individua/ inputs

That's not complicated enough!

- Okay, now let's get serious. We'll allow arbitrary "two-way interactions":

$$
y^{e s t}(\mathbf{x})=\sum_{k=1}^{m} g_{k}\left(x_{k}\right)+\sum_{k=1}^{m} \sum_{t=k+1}^{m} g_{k t}\left(x_{k}, x_{t}\right)
$$

The function we're learning is allowed to be a sum of non-linear functions over all one-d and $2-d$ subsets of attributes

Can still be expressed as a linear combination of basis functions

Thus learnable by linear regression Full MARS: Uses cross-validation to choose a subset of subspaces, knot resolution and other parameters.

If you like MARS...

.See also CMAC (Cerebellar Model Articulated Controller) by James Albus (another of Andrew's heroes)

- Many of the same gut-level intuitions
- But entirely in a neural-network, biologically plausible way
- (All the low dimensional functions are by means of lookup tables, trained with a deltarule and using a clever blurred update and hash-tables)

Where are we now?

Inference	Engine Learn

Citations

Radial Basis Functions
T. Poggio and F. Girosi, Regularization Algorithms for Learning That Are Equivalent to Multilayer Networks, Science, 247, 978--982, 1989
LOESS
W. S. Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots, Journal of the American Statistical Association, 74, 368, 829-836, December, 1979

Regression Trees etc
L. Breiman and J. H. Friedman and R. A. Olshen and C. J. Stone, Classification and Regression Trees, Wadsworth, 1984
J. R. Quinlan, Combining InstanceBased and Model-Based Learning, Machine Learning: Proceedings of the Tenth International Conference, 1993
MARS
J. H. Friedman, Multivariate Adaptive Regression Splines, Department for Statistics, Stanford University, 1988, Technical Report No. 102

