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Note to other teachers and users of 
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these slides verbatim, or to modify them 
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originals are available. If you make use 
of a significant portion of these slides in 
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message, or the following link to the 
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Comments and corrections gratefully 
received. 

This is re
ordered material 

from the Neural Nets 

lecture and the “Favorite 

Regression Algorithms” 

lecture
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Single-
Parameter 

Linear 
Regression
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Linear Regression

Linear regression assumes that the expected value of 
the output given an input, E[y|x], is linear.

Simplest case: Out(x) = wx for some unknown w.

Given the data, we can estimate w.

y5 = 3.1x5 = 4

y4 = 1.9x4 = 1.5

y3 = 2x3 = 2

y2 = 2.2x2 = 3

y1 = 1x1 = 1

outputsinputs

DATASET

← 1 →

↑
w
↓
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1-parameter linear regression
Assume that the data is formed by

yi = wxi + noisei

where…
• the noise signals are independent
• the noise has a normal distribution with mean 0 

and unknown variance σ2

p(y|w,x) has a normal distribution with
• mean wx
• variance σ2
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Bayesian Linear Regression
p(y|w,x) = Normal (mean wx, var σ2)

We have a set of datapoints (x1,y1) (x2,y2) … (xn,yn) 
which are EVIDENCE about w.

We want to infer w from the data.
p(w|x1, x2, x3,…xn, y1, y2…yn)

•You can use BAYES rule to work out a posterior 
distribution for w given the data.
•Or you could do Maximum Likelihood Estimation
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Maximum likelihood estimation of w

Asks the question:
“For which value of w is this data most likely to have 

happened?”
<=>

For what w is
p(y1, y2…yn |x1, x2, x3,…xn, w) maximized?

<=>
For what w is

maximized? ),(
1

i

n

i
i xwyp∏

=
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Linear Regression

The maximum 
likelihood w is 
the one that 
minimizes sum-
of-squares of 
residuals

We want to minimize a quadratic function of w.

( )

( ) ( ) 222

2

2 wxwyxy

wxy

i
i

iii

i
ii

∑∑ ∑

∑
+−=

−=Ε

E(w) w
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

( ) wxx =Out
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Linear Regression
Easy to show the sum of 

squares is minimized 
when

2∑
∑=

i

ii

x

yx
w

The maximum likelihood 
model is

We can use it for 
prediction

Note:   In Bayesian stats you’d have 

ended up with a prob dist of w

And predictions would have given a prob 

dist of expected output

Often useful to know your confidence.  

Max likelihood can give some kinds of 

confidence too.

p(w)

w

( ) wxx =Out
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Multivariate 
Linear 

Regression
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Multivariate Regression
What if the inputs are vectors?

Dataset has form
x1 y1

x2 y2

x3 y3
.:                                    :
.
xR yR

3 .

. 4                                              
6 .

. 5

. 8

. 10

2-d input 
example

x1

x2
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Multivariate Regression
Write matrix X and Y thus:



















=



















=



















=

RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2   

...

...

...

..........

..........

..........

y

x

x
x

x

1

(there are R datapoints.  Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood w is w = (XTX) -1(XTY)
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Multivariate Regression
Write matrix X and Y thus:



















=


















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



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










=

RRmRR

m

m

R y

y
y

xxx

xxx
xxx

MMM
2

1

21

22221

11211

2   

...

...

...

..........

..........

..........

y

x

x
x

x

1

(there are R datapoints.  Each input has m components)

The linear regression model assumes a vector w such that

Out(x) = wTx = w1x[1] + w2x[2] + ….wmx[D]

The max. likelihood w is w = (XTX) -1(XTY)

IMPORTANT EXERCISE:  
PROVE IT !!!!!
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Multivariate Regression (con’t)

The max. likelihood w is w = (XTX)-1(XTY)

XTX is an m x m matrix:  i,j’th elt is

XTY is an m-element vector:  i’th elt

∑
=

R

k
kjkixx

1

∑
=

R

k
kki yx

1
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Constant Term 
in Linear 

Regression
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What about a constant term?
We may expect 
linear data that does 
not go through the 
origin.

Statisticians and 
Neural Net Folks all 
agree on a simple 
obvious hack.

Can you guess??
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The constant term
• The trick is to create a fake input “X0” that 

always takes the value 1

2055
1743
1642
YX2X1

1
1
1
X0

2055
1743
1642
YX2X1

Before:
Y=w1X1+ w2X2 

…has to be a poor 
model

After:
Y= w0X0+w1X1+ w2X2 

= w0+w1X1+ w2X2 

…has a fine constant 
term

In this example, 
You should be able 
to see the MLE w0
, w1 and w2 by 
inspection 
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Linear 
Regression with 
varying noise

Heteroscedasticity
...
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Regression with varying noise
• Suppose you know the variance of the noise that 

was added to each datapoint.

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

1/423
432
1/412
111
4½½
σi

2yixi

),(~ 2
iii wxNy σAssume What’s th

e MLE 

estim
ate of w?
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MLE estimation with varying noise

=),,...,,,,...,,|,...,,(log 22
2

2
12121argmax wxxxyyyp

w
RRR σσσ

=
−∑

=

R

i i

ii wxy

w 1
2

2)(argmin σ

=







=

−∑
=

0)(such that 
1

2

R

i i

iii wxyxw
σ



















∑

∑

=

=

R

i i

i

R

i i

ii

x

yx

1
2

2
1

2

σ

σ

Assuming independence 
among noise and then 
plugging in equation for 
Gaussian and simplifying.

Setting dLL/dw
equal to zero

Trivial algebra
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This is Weighted Regression
• We are asking to minimize the weighted sum of 

squares

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

σ=1/2

σ=2

σ=1

σ=1/2

σ=2

∑
=

−R

i i

ii wxy

w 1
2

2)(argmin σ

2

1

iσ
where weight for i’th datapoint is
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Non-linear 
Regression
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Non-linear Regression
• Suppose you know that y is related to a function of x in 

such a way that the predicted values have a non-linear 
dependence on w, e.g:

x=0 x=3x=2x=1
y=0

y=3

y=2

y=1

33
23
32
2.51
½½
yixi

),(~ 2σii xwNy +Assume What’s th
e MLE 

estim
ate of w?
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w

RR σ
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∑
=
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w

Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero
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Non-linear MLE estimation

=),,,...,,|,...,,(log 2121argmax wxxxyyyp
w
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?
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Non-linear MLE estimation
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Assuming i.i.d. and 
then plugging in 
equation for Gaussian 
and simplifying.

Setting dLL/dw
equal to zero

We’re down the 
algebraic toilet

So guess w
hat 

we do?

Common (but not only) approach:
Numerical Solutions:
• Line Search
• Simulated Annealing
• Gradient Descent
• Conjugate Gradient
• Levenberg Marquart
• Newton’s Method

Also, special purpose statistical-
optimization-specific tricks such as 
E.M. (See Gaussian Mixtures lecture 
for introduction)
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Polynomial 
Regression
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Polynomial Regression
So far we’ve mainly been dealing with linear regression

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

3

::

11

21

:

3

7
Z= y=

z1=(1,3,2)..

zk=(1,xk1,xk2)

y1=7..

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

::

11

41

:

3

7Z=
y=

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,)

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2+
β3 x1

2 + β4 x1x2 + β5 x2
2
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Quadratic Regression
It’s trivial to do linear fits of fixed nonlinear basis functions

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

::

11

41

:

3

7Z=
y=

z=(1 ,  x1,   x2 ,   x1
2, x1x2,x2

2
,)

β=(ZTZ)-1(ZTy)

yest = β0+ β1 x1+ β2 x2+
β3 x1

2 + β4 x1x2 + β5 x2
2

Each component of a z vector is called a term.

Each column of the Z matrix is called a term column

How many terms in a quadratic regression with m
inputs?

•1 constant term

•m linear terms

•(m+1)-choose-2 = m(m+1)/2 quadratic terms

(m+2)-choose-2 terms in total = O(m2)

Note that solving β=(ZTZ)-1(ZTy) is thus O(m6)
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Qth-degree polynomial Regression

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

1

2

1

9

1

6

1

3

…:

…1

…1

:

3

7
Z=

y=

z=(all products of powers of inputs in 
which sum of powers is q or less,)

β=(ZTZ)-1(ZTy)

yest = β0+ 
β1 x1+…
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m inputs, degree Q: how many terms?
= the number of unique terms of the form

Qqxxx
m

i
i

q
m

qq m ≤∑
=1

21   where...21

Qqxxx
m

i
i

q
m

qqq m =∑
=0

21   where...1 210

= the number of unique terms of the form

= the number of lists of non-negative integers [q0,q1,q2,..qm] 
in which Σqi = Q

= the number of ways of placing Q red disks on a row of 
squares of length Q+m       = (Q+m)-choose-Q

Q=11, m=4

q0=2 q2=0q1=2 q3=4 q4=3
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Radial Basis 
Functions
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Radial Basis Functions (RBFs)

:::

311

723

YX2X1

::

11

23

:

3

7X= y=

x1=(3,2).. y1=7..

…

…

…

…

…

…

…

…

…

…

…

…

……

……

……

:

3

7
Z=

y=

z=(list of radial basis function evaluations)

β=(ZTZ)-1(ZTy)

yest = β0+ 
β1 x1+…
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1-d RBFs

yest = β1 φ1(x) + β2 φ2(x) + β3 φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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Example

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with Linear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)
then given Q basis functions, define the matrix Z such that Zkj = 
KernelFunction( | xk - ci | / KW) where xk is the kth vector of inputs

And as before, β=(ZTZ)-1(ZTy)

x

y

c1 c1 c1

All ci ’s are held constant 
(initialized randomly or 

on a grid in m-
dimensional input space)

KW also held constant 
(initialized to be large 

enough that there’s decent 
overlap between basis 

functions*
*Usually much better than the crappy 

overlap on my diagram
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
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RBFs with NonLinear Regression

yest = 2φ1(x) + 0.05φ2(x) + 0.5φ3(x)

where

φi(x) = KernelFunction( | x - ci | / KW)

But how do we now find all the βj’s, ci ’s and KW ?

x

y

c1 c1 c1

Allow the ci ’s to adapt to 
the data (initialized 

randomly or on a grid in 
m-dimensional input 

space)

KW allowed to adapt to the data.
(Some folks even let each basis 
function have its own 
KWj,permitting fine detail in 
dense regions of input space)

Answer: Gradient Descent
(But I’d like to see, or hope someone’s already done, a 
hybrid, where the ci ’s and KW are updated with gradient 
descent while the βj’s use matrix inversion)
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Radial Basis Functions in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Two inputs.

Outputs (heights 
sticking out of page) 
not shown.
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Happy RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors
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Crabby RBFs in 2-d

x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

What’s the 
problem in this 
example?
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x1

x2

Center

Sphere of 
significant 
influence of 
center

Blue dots denote 
coordinates of 
input vectors

More crabby RBFs And what’s the 
problem in this 
example?
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Hopeless!

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this is a disaster!
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Unhappy

x1

x2

Center

Sphere of 
significant 
influence of 
center

Even before seeing the data, you should 
understand that this isn’t good either..



25

Copyright © 2001, 2003, Andrew W. Moore 49

Robust 
Regression
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Robust Regression

x

y
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Robust Regression

x

y

This is the best fit that 
Quadratic Regression can 
manage
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Robust Regression

x

y

…but this is what we’d 
probably prefer
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.
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LOESS-based Robust Regression

x

y

After the initial fit, score 
each datapoint according to 
how well it’s fitted…

You are a very good 
datapoint.

You are not too 
shabby.

But you are 
pathetic.
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
Weighted regression was described earlier in 
the “vary noise” section, and is also discussed 
in the “Memory-based Learning” Lecture.

Guess what happens next?
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Robust Regression

x

y

For k = 1 to R…

•Let (xk,yk) be the kth datapoint

•Let yest
k be predicted value of 

yk

•Let wk be a weight for 
datapoint k that is large if the 
datapoint fits well and small if it 
fits badly:

wk = KernelFn([yk- yest
k]2)

Then redo the regression 
using weighted datapoints.
I taught you how to do this in the “Instance-
based” lecture (only then the weights 
depended on distance in input-space)

Repeat whole thing until 
converged!
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Robust Regression---what we’re 
doing

What regular regression does:

Assume yk was originally generated using the 
following recipe:

yk = β0+ β1 xk+ β2 xk
2 +N(0,σ2)

Computational task is to find the Maximum 
Likelihood β0 , β1 and β2 
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Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge
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Robust Regression---what we’re 
doing

What LOESS robust regression does:

Assume yk was originally generated using the 
following recipe:

With probability p:
yk = β0+ β1 xk+ β2 xk

2 +N(0,σ2)

But otherwise
yk ~ N(µ,σhuge

2)

Computational task is to find the Maximum 
Likelihood β0 , β1 , β2 , p, µ and σhuge

Mysteriously, the 
reweighting procedure 
does this computation 
for us.

Your first glimpse of 
two spectacular letters: 

E.M.
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Regression 
Trees
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Regression Trees
• “Decision trees for regression”
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A regression tree leaf

Predict age = 47

Mean age of records 
matching this leaf node
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A one-split regression tree

Predict age = 36Predict age = 39

Gender?

Female Male
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Choosing the attribute to split on

• We can’t use 
information gain.

• What should we use?

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender



34

Copyright © 2001, 2003, Andrew W. Moore 67

Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(1)|(
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Choosing the attribute to split on

MSE(Y|X) = The expected squared error if we must predict a record’s Y 
value given only knowledge of the record’s X value

If we’re told x=j, the smallest expected error comes from predicting the 
mean of the Y-values among those records in which x=j. Call this mean 
quantity µy

x=j

Then…

725+0YesMale

:::::

2400NoMale
3812NoFemale

AgeNum. Beany
Babies

Num. 
Children

Rich?Gender

∑ ∑
= =

=−=
X

k

N

j jxk

jx
yk µy

R
XYMSE

1 )such that  (

2)(1)|(

Regression tree attribute selection: greedily 
choose the attribute that minimizes MSE(Y|X) 

Guess what we do about real-valued inputs?

Guess how we prevent overfitting
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Pruning Decision

Predict age = 36Predict age = 39

Gender?

Female Male

…property-owner = Yes

# property-owning females = 56712
Mean age among POFs = 39
Age std dev among POFs = 12

# property-owning males = 55800
Mean age among POMs = 36
Age std dev among POMs = 11.5

Use a standard Chi-squared test of the null-
hypothesis “these two populations have the same 
mean” and Bob’s your uncle.

Do I deserve 
to live?
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Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared
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Linear Regression Trees

Predict age = 

26 + 6 * NumChildren -
2 * YearsEducation

Gender?

Female Male

…property-owner = Yes

Leaves contain linear 
functions (trained using 
linear regression on all 
records matching that leaf)

Predict age = 

24 + 7 * NumChildren -
2.5 * YearsEducation

Also known as 
“Model Trees”

Split attribute chosen to minimize 
MSE of regressed children.

Pruning with a different Chi-
squared

Detail: Y
ou typ

ically i
gnore any 

categorica
l attrib

ute that has been tested 

on higher up in the tre
e during the 

regressio
n. But use all untested 

attrib
utes, a

nd use real-va
lued attrib

utes 

even if t
hey’ve

 been tested above
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Test your understanding

x

y

Assuming regular regression trees, can you sketch a 
graph of the fitted function yest(x) over this diagram?
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Test your understanding

x

y

Assuming linear regression trees, can you sketch a graph 
of the fitted function yest(x) over this diagram?
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Multilinear
Interpolation
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Multilinear Interpolation

x

y

Consider this dataset. Suppose we wanted to create a 
continuous and piecewise linear fit to the data
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Multilinear Interpolation

x

y

Create a set of knot points: selected X-coordinates 
(usually equally spaced) that cover the data

q1 q4q3 q5q2
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Multilinear Interpolation

x

y

We are going to assume the data was generated by a 
noisy version of a function that can only bend at the 
knots. Here are 3 examples (none fits the data well)

q1 q4q3 q5q2
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How to find the best fit?
Idea 1: Simply perform a separate regression in each 
segment for each part of the curve

What’s the problem with this idea?

x

y

q1 q4q3 q5q2
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How to find the best fit?

x

y

Let’s look at what goes on in the red segment

q1 q4q3 q5q2

h2

h3

233
2

2
3   where)()()( qqwh

w
xqh

w
xqxyest −=

−
+

−
=
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
xqxφ

w
qxxφ −

−=
−

−= 3
3

2
2 1)(,1)( where

φ2(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
xqxφ

w
qxxφ −

−=
−

−= 3
3

2
2 1)(,1)( where

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
qxxφ

w
qxxφ ||1)(,||1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In the red segment…

q1 q4q3 q5q2

h2

h3

)()()( 3322 xφhxφhxyest +=

w
qxxφ

w
qxxφ ||1)(,||1)( where 3

3
2

2
−

−=
−

−=

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xφhxy
1

)()(





 <−

−
−=

otherwise0

 || if||1)( where wqx
w
qx

xφ i
i

i

φ2(x)

φ3(x)
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How to find the best fit?

x

y

In general

q1 q4q3 q5q2

h2

h3

∑
=

=
KN

i
ii

est xφhxy
1

)()(





 <−

−
−=

otherwise0

 || if||1)( where wqx
w
qx

xφ i
i

i

φ2(x)

φ3(x)

And this is simply a basis function 
regression problem!

We know how to find the least 
squares hiis!

Copyright © 2001, 2003, Andrew W. Moore 86

In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3

To predict the 
value here…
First interpolate 
its value on two 
opposite edges… 7.33

7
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05
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In two dimensions…

x1

x2

Blue dots show 
locations of input 
vectors (outputs 
not depicted)

Each purple dot 
is a knot point. 
It will contain 
the height of 
the estimated 
surface

But how do we 
do the 
interpolation to 
ensure that the 
surface is 
continuous?

9

7 8

3
To predict the 
value here…
First interpolate 
its value on two 
opposite edges…
Then interpolate 
between those 
two values

7.33

7

7.05

Notes:

This can easily be generalized 
to m dimensions.

It should be easy to see that it 
ensures continuity

The patches are not linear
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Doing the regression

x1

x2

Given data, how 
do we find the 
optimal knot 
heights?

Happily, it’s 
simply a two-
dimensional 
basis function 
problem.

(Working out 
the basis 
functions is 
tedious, 
unilluminating, 
and easy)

What’s the 
problem in 
higher 
dimensions?

9

7 8

3
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MARS: Multivariate 
Adaptive Regression 

Splines
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MARS
• Multivariate Adaptive Regression Splines
• Invented by Jerry Friedman (one of 

Andrew’s heroes)
• Simplest version:

Let’s assume the function we are learning is of the 
following form:

∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

Idea: Each 
gk is one of 

these
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MARS ∑
=

=
m

k
kk

est xgy
1

)()(x

Instead of a linear combination of the inputs, it’s a linear 
combination of non-linear functions of individual inputs

x

y

q1 q4q3 q5q2

∑∑
= =

=
m

k
k

N

j

k
j

k
j

est xφhy
K

1 1
)()(x







<−
−

−=
otherwise0

 || if
||

1)( where k
k
jk

k

k
jk

k
j

wqx
w
qx

xφ

qk
j : The location of 

the j’th knot in the 
k’th dimension
hk

j : The regressed 
height of the j’th
knot in the k’th
dimension
wk: The spacing 
between knots in 
the kth dimension
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That’s not complicated enough!
• Okay, now let’s get serious. We’ll allow 

arbitrary “two-way interactions”:

∑ ∑∑
= +==

+=
m

k

m

kt
tkkt

m

k
kk

est xxgxgy
1 11

),()()(x

The function we’re 
learning is allowed to be 

a sum of non-linear 
functions over all one-d 

and 2-d subsets of 
attributes

Can still be expressed as a linear 
combination of basis functions

Thus learnable by linear regression

Full MARS: Uses cross-validation to 
choose a subset of subspaces, knot 
resolution and other parameters.
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If you like MARS…
…See also CMAC (Cerebellar Model Articulated 

Controller) by James Albus (another of 
Andrew’s heroes)
• Many of the same gut-level intuitions
• But entirely in a neural-network, biologically 

plausible way
• (All the low dimensional functions are by 

means of lookup tables, trained with a delta-
rule and using a clever blurred update and 
hash-tables)
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Where are we now?

In
pu

ts

Classifier
Predict

category

In
pu

ts Density
Estimator

Prob-
ability

In
pu

ts

Regressor
Predict
real no.

Dec Tree, Gauss/Joint BC, Gauss Naïve BC, 

Joint DE, Naïve DE, Gauss/Joint DE, Gauss Naïve 
DE

Linear Regression, Polynomial Regression,  RBFs, 
Robust Regression Regression Trees,  Multilinear 
Interp, MARS

In
pu

ts Inference
Engine Learn p(E1|E2)

Joint DE
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