Bayesian Networks:
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Note to other teachers and users of these slides. Andrew and Scott would
be delighted if you found this source material useful in giving your own
lectures. Feel free to use these slides verbatim, or to modify them to fit
your own needs. PowerPoint originals are available. If you make use of a
significant portion of these slides in your own lecture, please include this
message, or the following link to the source rep05|tory of Andrew's
tutorials: hitp cs.cmu edu/—awm/futorials . Comments and
corrections gratefully received.

What Independencies does a Bayes Net Model ?
-_—

 Inorder for a Bayesian network to model a
probability distribution, the following must be true by
definition:

Each variable is conditionally independent of al its non
descendants in the graph given the value of al its parents.

* Thisimplies

P(X,...X,) = O P(X, | parents(X,)

i=1

« But what else does it imply?




What Independencies does a Bayes Net Model?

o Example:
Given Y, does learning the value of Z tell us

@ nothing new about X?

l.e, isP(X]Y, Z) equal to P(X | Y)?

Yes. Sincewe know the value of al of X's
parents (namely, Y), and Z isnot a
descendant of X, X is conditionaly

independent of Z.

Also, since independence is symmetric,
P(ZY, X) = P(Z]Y).

Quick proof that independence is symmetric

* Assume: P(X|Y, 2) = P(X]Y)

e Then:
PZ|X,Y) = P(XF’:(()LZ\)(;’(Z) (Bayes's Rule)
P(Y | Z2)P(X|Y,Z2)P(Z _
= lex(|Y)|P(Y)) (2) (Chain Rule)
_ PY1Z2)P(X1Y)P(2) .
B P(X |Y)P(Y) (By Assumption)

P(Y |Z2)P(Z
:% =P(Z]Y) (Bayes s Rule)




What Independencies does a Bayes Net Model?
T ————SURT ]

o Let I<X,Y,Z> represent X and Z being conditionally
independent given .

o I<X,Y,Z>? Yes, just asin previous example: All X’s
parents given, and Z is not a descendant.

What Independencies does a Bayes Net Model ?

Joy

W 1
1%
. 1<X{U},Z>? No.

o I<X,{U\V},Z2>? Yes

* Maybe <X, S, Z> iff Sactsacutset between X and Z
in an undirected version of the graph...?




Things get a little more confusing
EEEENEEEREREEEST . SSEEEEENEEN]

X has no parents, so we're know al its parents
vauestrivialy

Z isnot a descendant of X
So, I<X {},Z>, even though there’' s a undirected path
from X to Z through an unknown variable Y.

What if we do know the value of Y, though? Or one
of its descendants?

The“Burglar Alarm” example

Touga o Fathaueke
e

Ponecar’

* Your house has atwitchy burglar alarm that is also
sometimes triggered by earthquakes.

 Earth arguably doesn’'t care whether your houseis
currently being burgled
* While you are on vacation, one of your neighbors

calls and tells you your home's burglar larm is
ringing. Uh oh!




Things get alot more confusing
Earthquaked

CAlam >
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» But now suppose you learn that there was a medium-sized
earthquake in your neighborhood. Oh, whew! Probably not a
burglar after al.

» Earthquake “explains away” the hypothetical burglar.
* But then it must not be the case that
I<Burglar,{ Phone Call}, Earthquake>, even though
I<Burglar {}, Earthquake>!

d-separation to the rescue

—

 Fortunately, there is arelatively smple agorithm for
determining whether two variablesin a Bayesian
network are conditionally independent: d-separation.

* Definition: X and Z are d-separated by a set of
evidence variables E iff every undirected path from X
to Zis“blocked”, where a path is “blocked” iff one
or more of the following conditionsistrue: ...




A path is*“blocked” when...

* Thereexistsavariable V on the path such that
* itisintheevidenceset E
* thearcs putting V in the path are “tail-to-tail”

...Qﬂ—@—DQ...

* Or, there existsavariable V on the path such that
* itisinthe evidence set E
* thearcs putting V in the path are “tail-to- head”

...Q—D@—?Q...

e Or, ...

A path is“blocked” when... (thefunky case)

e ... Or, there exists a variable V on the path such that
* itisNOT in the evidence set E
* neither areany of its descendants
* thearcs putting V on the path are * head-to-head”

00007,@<4©ooo




d-separation to the rescue, cont'd
e Theorem [Verma & Pearl, 1998]:
* If aset of evidence variables E d-separates X and
Z in aBayesan network’s graph, then I<X, E, Z>.
* d-separation can be computed in linear time using a
depth-first-search-like agorithm.
* Great! We now have afast agorithm for
automatically inferring whether learning the value of
one variable might give us any additiona hints about

some other variable, given what we aready know.

e “Might”: Variables may actually be independent when they’ re not d-
separated, depending on the actual probabilities involved

d-separation example

e

o|<C, {}, D>?

o|<C, {A}, D>?

|<C, {A, B}, D>?
|I<C, {A, B, J}, D>?
|<C, {A,B, E, J}, D>?

SRIad
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Bayesian Network Inference

¢ Inference: calculating P(X|Y) for some variables or
sets of variables X and Y.

* Inference in Bayesian networks is #P-hard!
Inputs: prior %o\babilities of .5

(7 ~\
Reduces to @ @ “.i @
—> Jd 0’0
©
P(O) must be

How many satisfying assignments? (#sat. assign.)* (.5"#inputs)

Bayesian Network Inference

* But...inferenceis still tractable in some cases.

* Let'slook aspecial class of networks: trees/ forests
in which each node has at most one parent.

/Q\
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Decomposing the probabilities
EENEENEEREERECII. I EEEEENERENN|

 Suppose we want P(X; | E) where E is some set of
evidence variables.

e Let'ssplit E into two parts:

* E; isthe part consisting of assignments to variablesin the
subtree rooted at X

* E*istherest of it

Decomposing the probabilities, cont’ d

P(X;|E)=P(X| |E, Ei+)
A
O O




Decomposing the probabilities, cont’d
EENEENEEREERECII. I EEEEENERENN|

P(X, |E)=P(X| |E ’Ei+)
_P(E |X,E)P(XE)
P(E |E")

Decomposing the probabilities, cont’ d

P(X, |E)=P(X;|E ,E) /C>\
_P(E [ X,E)P(X|E") O
P(E" |E") /&D\

O O

_ P(E/ | X)P(X|E")
P(E |E’)
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Decomposing the probabilities, cont’d

P(X;|E)=P(X, |E ,E)

_P(E" | X, E")P(X|E")

- PEIED)

_P(E | X)P(X|E)

P(E |E")

=ap(X;)?(X;) Where:
* a isaconstant independent of X;
* p(Xi) = P(X [E)
1 (X)=PETX)

Using the decomposition for inference
-_—

* We can use this decomposition to do inference as
follows. First, compute | (X;) =P(E;| X) foral X;
recursively, using the leaves of the tree as the base
case.

« If Xi isaledf:
« If X isin E: 1 (X)) = 1if X, matchesE, O otherwise
 If X;isnotin E: E;-isthe null set, so
P(E| X)) = 1 (constant)
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Quick aside: “Virtual evidence’

* For theoretical simplicity, but without loss of
generdlity, let’sassumethat all variablesin E (the

evidence set) are leaves in the tree.
* Why can we do this WLOG:

@ Equivalent to @

—

Observe X; @ Observe X

Where P(X;’| X;) =1if X;’=X;, O otherwise

Calculating | (X)) for non-leaves

 Suppose X; has one child, X..

)

* Then:
?2(X)=P(E; | X)) =




Calculating | (X)) for non-leaves

* Suppose X; has one child, X..
%)

e Then:;

2(X,) = P(E/ X)) =4 P(E/ , Xc = j1X))

Calculating | (X)) for non-leaves

 Suppose X; has one child, X..

)

?2(X) =P(E | X)) = é_ P(E/, Xc=171X;)

=a P(Xc = JIX)P(E X, Xe = )
]

e Then:
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Calculating | (X)) for non-leaves

* Suppose X; has one child, X..
%)

e Then:;

2(X)=P(E X)) =4 P(E/, Xc = ]IX)

P(Xe = JIX)P(E] | X, X =)

(Xe = TIX)P(E] [ Xc =)

I
— Qo _ Qo _ Qo
Y

P(Xc =11X)?(Xc =)

Calculating | (X)) for non-leaves

* Now, suppose X has a set of children, C.

 Since X, d-separates each of its subtrees, the
contribution of each subtree to | (X;) is independent:

2X) =P(E 1X)= O ?,(X,)

x;ic

~ €, u
=0éa P(X; [ X)2X;)u
X i C@X; 9]
wherel (X;) is the contribution to P(E;| X;) of the part of
the evidence lying in the subtree rooted at one of X/'s
children X;.

14



We are now | -happy
EEEENEEEEENEEENTT I SSENEEENEEN]

» S0 now we have away to recursively compute al the
| (X)'s, starting from the root and using the leaves as
the base case.

* If we want, we can think of each node in the network
as an autonomous processor that passes alittle “I
message’ to its parent.

The other half of the problem
-—
* Remember, POX[E) =ap(X)l (Xi). Now that we have
al thel (X;)'s, what about the p(X;)’'s?
pPX) = PCX; [E*).

* What about the root of thetree, X.? In that case, E,*
isthe null set, so p(X;) = P(X;). No sweat. Sincewe
aso know | (X,), we can compute the final P(X.).

* Sofor an arbitrary X; with parent X, let’sinductively
assume we know p(X;) and/or P(X|E). How do we
get p(X))?

15



Computing p(X)
EEEENEEEEENEEENTTT I SSENEEENEEN]

p(X) = P(X, |Ei+) =

Computing p(X))

9) p(X)=P(X, |E)= @ P(X, X, = | |E)

/QK‘O

O O
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Computing p(X)
EEEENEEEEENEEENTTT I SSENEEENEEN]

p(X) = P(X,|E") =@ P(X,, X, = | |E)

=8 P(X,|X,=J,E)P(X, =]|E")
j

Computing p(X))

9) p(X,) = P(X, |E") =8 P(X,, X, = ] |E)
/@\ a P(X,1X, = j,EP(X, = ]|E")
/@ \ORN

O O

P(X [ X, = DP(X, = |E")

]
Qo
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Computing p(X)
EEEENEEEEENEEENTTT I SSENEEENEEN]

P(X)=P(X |E) =8 P(X, X, =] |E")

=a PX X, =1, E)P(X, = ]|E")
=a PX X, = )P(X, = |E)
0 P(X_,=J|E)
= P(X.|X =j)——=Fr -~
AP = =)
Computing p(X))
9) p(X)=P(X,|E")=a P(X,,X, =] |E")
]

a P X, =,E")P(X, = |E)

/@\ P(X X, = )P(X, =jlE")
Q0 .

. P(X,=]lE)

POXi X, =) 70—

O O - 2,06,= )

P(X [ X, = ))pi (X, =)

1
Qo

I
Qo -

]
Qo _

P(X,1E)

Where p;(X.,) is defined as 200
(X,
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We'redone. Yay!

 Thuswe can compute all the p(X)'s, and, in turn, all
the PCX [E)’s.

* Can think of nodes as autonomous processors passing
| and p messages to their neighbors

Conjunctive queries
-—
* What if wewant, e.g., P(A, B | C) instead of just
marginal distributions P(A | C) and P(B | C)?
 Just use chain rule:
* PA,B|C)=PA|C)PB|A,C)
 Each of the latter probabilities can be computed
using the technique just discussed.
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Polytrees

» Technique can be generalized to polytrees:
undirected versions of the graphs are till trees, but
nodes can have more than one parent

O

Dealing with cycles
-_—

» Can deal with undirected cyclesin graph by

¢ clustering variables together

"
@gﬁ“-*’@D
© ®

« Conditioning Q/O\'O (?j{:) ;?\i;
» O — ®» O & 0
o o oo @p

2 € g 2 € g 2 € g
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Join trees

 Arbitrary Bayesian network can be transformed via
some evil graph-theoretic magic into ajointreein
which asimilar method can be employed.

® T
N oy > @

Qg@

In the worst case the join tree nodes must take on exponentially
many combinations of values, but often works well in practice
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