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Decomposable score

Log data likelihood

Decomposable score:
Decomposes over families in BN (node and its parents)
Will lead to significant computational efficiency!!!
Score(G : D) = ∑i FamScore(Xi|PaXi : D)

How many trees are there?
Nonetheless – Efficient optimal algorithm finds best tree



Scoring a tree 1: equivalent trees

Scoring a tree 2: similar trees



Chow-Liu tree learning algorithm 1 

For each pair of variables Xi,Xj
Compute empirical distribution:

Compute mutual information:

Define a graph
Nodes X1,…,Xn

Edge (i,j) gets weight

Chow-Liu tree learning algorithm 2

Optimal tree BN
Compute maximum weight 
spanning tree
Directions in BN: pick any 
node as root, breadth-first-
search defines directions



Can we extend Chow-Liu 1

Tree augmented naïve Bayes (TAN) [Friedman 
et al. ’97] 

Naïve Bayes model overcounts, because 
correlation between features not considered
Same as Chow-Liu, but score edges with:

Can we extend Chow-Liu 2

(Approximately learning) models 
with tree-width up to k

[Chechetka & Guestrin ’07]
But, O(n2k+6)…



What you need to know about 
learning BN structures so far
Decomposable scores

Maximum likelihood
Information theoretic interpretation

Best tree (Chow-Liu)
Best TAN
Nearly best k-treewidth (in O(N2k+6))

Scoring general graphical models –
Model selection problem

Data

<x1
(1),…,xn

(1)>
…

<x1
(m),…,xn

(m)>
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What’s the best structure?

The more edges, the fewer independence assumptions,
the higher the likelihood of the data, but will overfit…



Maximum likelihood overfits!

Information never hurts:

Adding a parent always increases score!!!

Bayesian score avoids overfitting

Given a structure, distribution over parameters

Difficult integral: use Bayes information criterion 
(BIC) approximation (equivalent as M! 1)

Note: regularize with MDL score
Best BN under BIC still NP-hard



Structure learning for general graphs

In a tree, a node only has one parent

Theorem:
The problem of learning a BN structure with at most d
parents is NP-hard for any (fixed) d¸2

Most structure learning approaches use heuristics
Exploit score decomposition
(Quickly) Describe two heuristics that exploit decomposition 
in different ways

Learn BN structure using local 
search

Starting from 
Chow-Liu tree

Local search,
possible moves:
• Add edge
• Delete edge
• Invert edge

Score using BIC



What you need to know about 
learning BNs
Learning BNs

Maximum likelihood or MAP learns parameters
Decomposable score
Best tree (Chow-Liu)
Best TAN
Other BNs, usually local search with BIC score
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Some Data

K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 
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K-means

1. Ask user how many 
clusters they’d like. 
(e.g. k=5) 

2. Randomly guess k 
cluster Center 
locations

3. Each datapoint finds 
out which Center it’s 
closest to.

4. Each Center finds 
the centroid of the 
points it owns…

5. …and jumps there

6. …Repeat until 
terminated!



K-means

Randomly initialize k centers
µ(0) = µ1

(0),…, µk
(0)

Classify: Assign each point j∈{1,…m} to nearest 
center:

Recenter: µi becomes centroid of its point:

Equivalent to µi ← average of its points!

What is K-means optimizing? 

Potential function F(µ,C) of centers µ and point 
allocations C:

Optimal K-means:
minµminC F(µ,C) 



Does K-means converge??? Part 1

Optimize potential function:

Fix µ, optimize C

Does K-means converge??? Part 2

Optimize potential function:

Fix C, optimize µ



Coordinate descent algorithms

Want: mina minb F(a,b)
Coordinate descent:

fix a, minimize b
fix b, minimize a
repeat

Converges!!!
if F is bounded
to a (often good) local optimum 

as we saw in applet (play with it!)

K-means is a coordinate descent algorithm!


